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Abstract

In this paper, we present a computational framework for finding optimal solutions to quadratic pro-
gramming problems. Our computational process is divided into three steps. Initially, we derive un-
constrained minimization of the quadratic programming problem by solving simultaneous equations
involving objective function derivatives and confirming its feasibility. Using this discovered point, we
tdentify the violated constraints and direct our search to these specific constraints. The next stage defines
the process for determining the unconstrained point on each active constraint violated by the objective
function’s optimal point. Moving on to the next stage, we use the constraint exploration technique to
systematically seek the optimal constrained point at the intersections of two or more violated active
constraints as candidates for the optimal solution. The feasibility of the unconstrained point is system-
atically checked at each level. If the unconstrained point is deemed feasible, then the optimal solution
is obtained, and the optimal value of the objective function is found.
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1. INTRODUCTION

Quadratic programming (QP) is a type of mathematics optimization problem that deals with the
minimization or maximization of a quadratic objective function subject to linear equality and inequal-
ity constraints [1], [3]. The objective function has a quadratic shape, which is commonly represented
by a positive semidefinite matrix, introducing curvature to the optimization landscape. QP is used in a
variety of fields, including finance, engineering, and machine learning when the objective function has
quadratic components. The purpose is to find the decision variable values that optimize the objective
function while satisfying the stipulated linear constraints. The QP solutions can provide insights into
efficient resource allocation, portfolio optimization, and other decision-making processes influenced by
both linear and quadratic interactions between variables ([2], [5], [6]). Although it represents a nat-
ural transition from the theory of linear programming to nonlinear programming problems, there are
some important differences between their optimal solution. If the optimum solution of a QP problem
exists, then it is either an interior point or boundary point which is not necessarily an extreme point
of the feasible region [4].

Uncertainty is widespread in Quadratic Programming Problems (QPP), particularly in portfolio
optimization in the field of finance. The inherent unpredictability of asset returns, as well as the dif-
ficulty of precisely measuring quantities such as covariance and expected returns, contribute to this
uncertainty. The covariance matrix, a fundamental component in QPP that represents asset risk, is
especially susceptible to changes in historical data, market conditions, and unforeseen occurrences,
adding to the uncertainty in optimization outcomes. The volatile nature of financial markets, as well
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as the impact of external factors such as economic shocks or geopolitical events, add to the unpre-
dictability. Furthermore, transaction costs, another essential aspect, increase uncertainty because
their estimation may not perfectly represent actual trading costs. Overall, addressing uncertainty in
QPP entails using modeling methodologies that account for financial markets’ intrinsic unpredictabil-
ity, resulting in more resilient and adaptive portfolio optimization procedures ([7], [8], [9], [10] & [11]).

In the other hand, exploring violated constraints in Quadratic Programming Problems (QPP) en-
tails looking into cases when the unconstrained optimal solution is obtained by solving simultaneous
equations formed by equating all derivatives of the objective function to zero. Because, when solving
a QPP, constraints are critical for ensuring that the generated solution corresponds to certain require-
ments set by the problem’s environment. Violated constraints occur when the solution fails to match
these requirements, which could be due to modeling flaws, data noise, or unforeseen complications
in the optimization environment. Furthermore, the exploration of violated constraints gives useful
information for model refinement. It aids in recognizing the limitations of the initial QPP formula-
tion, leading changes to constraint definitions, relaxing constraints, or introducing more constraints
to better depict the problem’s real-world complexities. This iterative approach adds to improving the
optimization model’s accuracy and practical applicability, guaranteeing that the generated solutions
fit more closely with the desired objectives and limitations in a variety of applications such as finance,
engineering, and operations research.

Since the optimal solution of a QPP can be an interior or a boundary point, as well as the pres-
ence of uncertainty in the model, we would like to propose a method called exploration of violated
constraints for exploring and obtaining the optimal solution of the original form of the QPP while
avoiding the use of additional information. In addition, the concept of violated constraints is often
an iterative process, involving a combination of mathematical analysis, algorithmic adjustments, and
model refinement. Each iteration should bring you closer to a feasible and optimal solution to the
considered problems.

The rest of the paper is organized as follows. In Section 2, fundamental notations and concepts
are rigorously introduced, establishing a foundational framework for comprehending the intricacies
of the problem and its associated violated constraints. The subsequent Section 3 formally formulates
the QPP, delving into a thorough discussion on the exploration of violated constraints, encompassing
both individual violations and the complex intersections of constraints. The culmination in Section 4
synthesizes these discussions, presenting a comprehensive algorithm meticulously designed to system-
atically determine the optimal solution for the QPP. This algorithm is distinguished by its noteworthy
adaptability and efficiency in navigating the expansive solution space of the problem. Finally, Section
5 meticulously concludes the paper, succinctly summarizing the key findings and providing a road map
for prospective avenues of research within this academic domain.

2. PRELIMINARY

A quadratic function on R” to be considered which is a positive semidefinite quadratic function
defined by

1nn n
f(x)=§Zijdijxi+Zcixi+q (@8]
i=1

j=li=1

where g, c; and d;; (i,j = 1,...,n) are constant scalar quantities and can be written in compact form as

flx)= %xTDx+CTx+q (2

in which D = (d;;), x, is symmetric matrix and positive semidefinite, ¢ = (c1, e, and x = (xq,..., x,) 7.
Without loss of generality [4], the linear function which represents a constraint is defined by

ATx xb 3)
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where and A is an m x n matrix and b a vector in R” and the symbol {*} represents inequality or
equality depending on the problem being considered.

The set of feasible region which the set of all solutions will be considered is closed set defined by

F={xlxeR", ATx <b,x>0} 4)

in which the symbol {*} represents the <.
By letting A = (a1, am)T with

ajz(ajl,...,ajm)T (j=1,...,m), (5)

the constraint inequalities can be written as

alx<b;(j=1,.,m), (6)

with the properties that the jth constraint is active if afx =bj, is inactive if afx < b; and violated by

. T )
xlfajx>bj.

3. PROBLEM FORMULATIONS

If we denoted x'© as the unconstrained minimum point (minimizer) of (2) then we have

x®=-D"¢ (7

As discussed previously, ¥ can be an interior or boundary point of a feasible region. However,
there is a chance that x'9 is an exterior point. So, if x? € F, then x(0) becomes the optimum solution
to the problem under consideration.

Another advantage strict convexity features of f(x) is that if x'?) is an exterior point, then the
optimal solution, x* of the considered problem must be on the boundary of the feasible region. As a
result, x* must be found on the active constraint or at the intersection of numerous active constraints,
[4] and [11]. Through the discussion above, we can present the following results.

Corollary 3.1. Suppose the quadratic programming problem is given by (2) subject to (4) then (i) If
%9 is determined by using (7) which is a unconstrained minimizer of f(x) is deemed feasible then x© is
referred to as the optimal solution of the problem. (ii)If x(0) ¢ F, then x* constrained minimum of f(x)
subject to F is on the boundary of the feasible region consisting of the equality of the violated constraints
whose indexes in V[x V1= {j|j € {i, ...,m},a?x > b;} and denoted by set S.

3.1. Searching the equality constraint point
Let us consider the QPP with n = 3. Suppose that the violated constraint is given by

ax+by+cz<d (8)

and its equality constraint is

ax+by+cz=d. 9)

By choosing three points in the equation (8), for instance (d/a,0,0),(0,d/b,0) and (0,0,d/c), and
using « and S for the step size such that the point. Then, any point with direction a and g is given by

(g,o,O))m(—g,%,o]w(—g,o,— (10)
which lies on the plane (9 is uniquely determined since there is one to one correspondence between the
point and its respected a and B. Therefore, by substituting this point into (3), the function of f(a, §)
is obtained. The unconstrained minimum of f(a, ) can be achieved through minimizing f(a, ) with
respect to @ and 8. Then we can obtain the point:
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d d d ,d ,d
(5-Sa-2p",2a",2p") (11)
a a a b c

which denotes to unconstrained minimum of f(x) on the equality constraint given by (8).

3.2. Searching on the intersection of active constraints

This subsection, will describe how to find the optimal point at the intersection of two active
constraints. The point is then tested for feasibility. If it is feasible, it will be the ideal solution for the
problem at hand. Otherwise, the intersection of three or more constraints must be checked.

Now consider two hyperplanes that are violated by the unconstrained minimum as follows:
a;x+bjy+ciz=d;, (i) (12)
ajx+bjy+cjz=dj, (j) (13)
which is sketched in following Figure 1.

FIGURE 1. Intersection of two planes [i] and [j].

Figure 1, represents two constraints labeled by [i] and [j], respectively. The constrained mini-
mum points on each constraint denoted by x. and x;* are determined in the previous section. The
optimal point at the intersection of the two constraints can be calculated by using any point, xll in
ith constraint together with the normal components of the both constraints described in the following
result.

Given the contained minimum for ith and jth constraints, respectively.

x; =(x;,¥i,2i) (14)

x; =(xj,5),2) (15)
The components of normal vector N for ith and jth constraints, respectively.

N; =(ai,bi,c;) (16)

N;=(aj,bj,cj) 17)

Theorem 3.2. If the Corollary 3.1 is valid then

(i): The point xgl) on the ith constraint can be determined by

2P =2 +N; +aN; (18)

=
in which a can be calculated by
d;+N;-N; +.7CZ< -N;

= 19
a NN, (19)




(ii): The unconstrained minimum point, x

PROOF.

@)

(i)
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@ on the intersection of ith and jth constraints can be
determined by

x® =} + pl - xf) (20)
where .
dj — xj -Nj

Ni-Nj+aNj-Ni

B=

The point xil) must lie in the ith constraint iff

2P N; =d;
Hence
(x;“+Ni+aNj)-Ni =d;
xf'Ni+Ni-Ni+aNj'Ni =d;.
Thus

d;+Nj-N; +x;k -N;
a =
N;-N;
Building on the assumption that point xgl) is within the ith constraint, additional investiga-
tion extends to the jth constraint. The condition states that point x® has to reside in the jth
constraint if and only if it meets all of the jth constraint’s prescribed conditions and restric-
tions. In essence, this means that the validity of x® is conditional on it meeting the specific
criteria outlined by the jth constraint, emphasizing the importance of adherence to constraints
in defining the feasibility and acceptability of points within the problem’s solution space. So,

2
x( )'NjZdj
]+l ~27))-Nj = d;
xf-Nj+,B(Ni+aNj)'Nj=dj

Thus, we obtain
dj - xj . NJ‘

:N,--Nj+aNj-Ni'

B

4. THE OUTLINE OF ALGORITHM

The outcomes presented in the preceding section serve as a foundation for formulating an algo-
rithm to attain the optimal solution for QPP. The outlined algorithm can be summarized as follows:

Step 1:
Step 2:

Step 3:

Compute 9, the unconstrained minimum of f(x) by using (7).

Start with a feasibility test to see if the initial answer xVis feasible. If @ satisfies all of the
constraints imposed by the problem, the algorithm terminates, and x? is regarded as the opti-
mal solution to the QPP. If ¥ is outside the feasible region, indicating a constraint violation,
identify and catalog the indices of the violated constraints. These indices are then added to
the set V[x@] for further study and exploration. This procedure assures that the algorithm
dynamically adjusts to the restrictions of the problem, iteratively improving its solution to
optimality.

Calculate x;, which is the constrained minimum of the objective function f(x) under the influ-
ence of equality constraint j, where j is a member of the set V[x?]. If the resulting x;‘ for a

certain j € V[(¥'] is regarded feasible, then x* becomes the optimal solution for the QPP, caus-
ing the program to stop. If xj is infeasible, extend the search to consider the possibility that
the optimal solution exists at the intersection of two or more violated constraints identified by
x©. This investigation is being carried out in accordance with the approach outlined in [4].



58 Dasril, Y, et al, JOMSO Vol 1 No 2 Jan 2024, pp. 53-58

This iterative procedure improves the algorithm’s adaptability by systematically navigating
the solution space to arrive at the best result.

5. CONCLUSION

In this paper, we address quadratic programming problems through the use of constraint ex-
ploration methods. The process of finding an optimal solution involves leveraging the concept of con-
straints being violated by the unconstrained. This innovative approach enables the efficient identi-
fication of optimal solutions to quadratic programming problems encountered in real-life scenarios.
Through this methodology, complex problems in quadratic programming can be solved effectively and
easily, contributing to practical applications in various domains.
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