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Abstract

This article discusses the Hamiltonian and Hypohamiltonian properties of Generalized Petersen Graphs
(GP, ¢ & GP,, ;). A Hamiltonian graph is a graph that has a Hamiltonian cycle; i.e. having a cycle
that passes through each vertex exactly once. A Hypohamiltonian graph is if it is not a
Hamiltonian graph, but if one vertex is removed it will be Hamiltonian. The Petersen graph is a
cubic graph with ten vertices and fifteen edges and each vertex is of degree three. The generalized
Petersen graph is denoted GP, , for positive numbers n and k with 2 <2k < 7. The Petersen graph
is not a Hamiltonian graph, but is Hypohamiltonian. In the Generalized Petersen graph for GP, ¢
for n = 1(mod 13), n = 3(mod 13), n = 7(mod 13), n = 9(mod 13) is a Hamiltonian, for n = 0(mod
13) is a hypohamiltonian, and for n = 2(mod 13), n = 4(mod 13), n = 5(mod 13), n = 6(mod 13),
n = 8(mod 13) neither.
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1. INTRODUCTION

Mathematics is a basic science that is used as a thinking tool to solve problems in various
fields of science. Mathematics has a very broad scope, one of which i1s graph theory. Graph
theory is a unique field because its modeling applications are usefully for applications in various
things such as transportation, communication networks, computer science, biology, economics,
engineering, health and social sciences. Graphs are one of the applications used to date using
theory. According to West et al. [13, h. 1], graph theory succeeded in solving its first problem in
1973, namely the problem of the Koningsberg bridge in the city of Koningsberg. In Russia there
is the Pregal river which flows around the island of Kneiphof and branches into two tributaries.
This problem was solved by a Swiss mathematician named Leonhard Euler. Euler's solution
represents this problem in a graph with four landmasses as vertex and seven bridges as edges.

Until now, graph theory has developed in various fields of representation, with modeling
applications that can be used to make it easier to analyze problems in graphs. In graph theory
there are several properties of the connectedness of a graph that are very interesting to study,
namely the Hamiltonian and Hypohamiltonian. A graph is called Hamiltonian if it has cycles
that pass through all the vertices. The cycle of a graph that contains each vertex is called a
Hamilton cycle. A graph is called Hypohamiltonian if every time one vertex is removed it
becomes Hamiltonian. Based on the relationship between these two properties, it is very
interesting to associate it with a generalized Petersen graph.

According to Potanka et al. [9, h. 32], the Petersen graph is known as a regular graph of 3-
degree at all its vertices and has been generalized. The Petersen graph is very popular to study
because it is unique, serves as an example of refutation in various places and has various
interesting properties. In Ginting and Banjarnahor et al. [5] discussing the relationship
between graph properties in Petersen graphs. Then, Wallis et al. [12, h. 34] discusses the
properties of the Hamiltonian, Chen and Fan et al. [1] discuss the properties of the
Hypohamiltonian. Furthermore, Ryjacek et al. [10] study the properties of the Hamiltonian in
3-connected independent graphs. The discussion which only focuses on independent graphs and
the properties of the Hamiltonian only attracts the author's interest in discussing further the
properties of the Hamiltonian and Hypohamiltonian in generalized Petersen graphs (GPugs).
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In the second part, several theoretical bases that support this research are explained. The third part
discusses this problem, namely proving the existence of the Hamiltonian cycle and the validity of the
Hamiltonian and Hypohamiltonian properties on generalized Petersen graphs (GPun,6). Then continued
to the fourth part by explaining the conclusions of the discussion of this article.

2. PRELIMINARIES

2.1 Graph
Graphs are a branch of mathematics that is widely used to describe various existing
structures. According to Munir et al. [8, h, 356], the definition of a graph is as follows.

Definition 2.1 The graph G is a pair of sets (V(G), E(G)) where V(G) is a non-empty and finite
set of objects called vertex, and E(G) is a set of unordered pairs of different vertices in V(G) are
called edges. The set of vertices in G is denoted by V(G) and the set of edges is denoted by E(G).
Whereas the number of elements in V(G) is called the order of G and is denoted by p(G) and the
number of elements in E(G) is called the measure and is denoted by q(G).

Definition 2.2 Edge e = (u, v) is called to connect vertex v and v if e = (u, v) is an edge in the
graph G, then u and v are called to be directly connected (adjacent), u and e and v and e are
called to be directly related (incidents). Edge e is denoted by e = uv.

2.1.2 Simple Graph and Unsimple Graph
According to Kusmira and Taufiqurrochman et al. [6], graphs can be grouped based on
the presence of rings or double edges in a graph, namely simple graphs and unsimple graphs.

Definition 2.3 A simple graph G is a graph that has V vertices (V) Z edges (E), namely ring
edges and double edges. In a simple graph, the edges are in unordered pairs. Meanwhile, a
unsimple graph G is a graph that has V vertices (V), 3 circular edges or double edges or both.
Below, Figure 1 (a) is an example of a simple graph and (b) is an example of a unsimple graph.

a a

G (b)
Figure 1. (a) Simple Graph, (b) Unsimple Graph

2.1.2 Directed Graph and Undirected Graph
Furthermore, Slamin et al. [11, h. 12] it is also explained that graphs can also be grouped
into directed graphs and undirected graphs.

Definition 2.4 A directed graph G is a graph whose edges are not the same length and has a
direction where (u, v) # (v, u) and a sequence of pairs of vertices must be connected by different
edges. Meanwhile, an undirected graph G is a graph whose edges are the same size where (u,
v) = (v, u) and the order of pairs of vertices connected by the edges is not taken into account. An
example can be seen in Figure 2 (a) is a directed graph and (b) is an undirected graph.
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a d a d

(@) (b)
Figure 2. (a) Directed Graph, (b) Undirected Graph
2.2 Degree
According to West et al. [13, h. 34], the sum of the degrees of each vertex on a graph is
called the graph degree. The degree of a vertex is the number of edges connected to that vertex.

Definition 2.5 The degree of vertices v in graph G, denoted by d(v), is the number of edges in
G that are invident to v. A vertex with degree zero is called an isolated vertex. The minimum
degree of graph G is denoted by §(G) and the maximum degree is denoted by A(G).

2.3 Connected Graph
In the connectivity of a graph, Makalew, Montolalu and Mananoas et al. [7] introduce
several terms, namely walk, path, trail, and cycle.

Definition 2.6 A connected graph G is an undirected graph G if V pairs of vertices u and v in
the set V 3 a path from u to v and if not, then G is called an unconnected graph.

Definition 2.7 A walk is a finite sequence of vertices and edges that begins and ends such that
each edge is connected to the vertices before and after it. Let v and v be points on graph G. The
walk u — v on graph G is an alternating finite sequence. A walk that has no edges is called a
trivial path.

Definition 2.8 A walk where all edges are different is called a trail. An open walk that passes
through all different vertices is called a path. Therefore, every path is definitely a trail, but not
all trails are paths. A closed walk with each edge distinct is called a circuit. A closed walk with
different vertices at each vertex is called a cycle. Therefore, every cycle is definitely a circuit,
but not all circuits are cycles.

2.4 Custom Graph

Following are several special graphs that have been introduced by Chia, Ong, and
Arumugm et al. [2], Deo et al. [3, h. 2], Frick and Singleton et al. [4], Potanka et al. [9, h. 32],
which are discussed, including regular graphs, complete graphs, cubic graphs, Petersen graphs,
and generalized Petersen graphs.

Definition 2.9 A regular graph is a graph in which all vertices have the same degree. If each
vertex has r-degree, then the graph is called a regular graph of r-degree. The complete graph
Ky is a regular graph of (n-1)-degree. If graph G has n vertices and r-degree then graph G has
% edges. In Figure 3 below is an example of a regular graph.

c a d

ae ao——eb

(a) (b) () (d)
Figure 3. Regular Graph of Degree (a) 0, (b) 1, (c) 2, (d) 3

Definition 2.10 A complete graph is a graph that has V vertices (V), 3 edges (F) connected
between every two vertices and is denoted by K., which is (n-1)-regular graph with order p = n

and size g = @ In Figure 3 above and Figure 4 below is an example of a complete graph
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L 1,

(a) (b) (c)
Figure 4. Complete Graph (a) K, (b) Kz, (c) K3

Definition 2.11 A cubic graph is a graph where every vertex v has 3-degree, or is often called
a regular graph of 3-degree. In Figure 5 below is an example of a cubic graph.

Figure 5. Cubic Graph

Definition 2.12 The Petersen graph is regular of 3-degree. In a Petersen graph all the vertices
are of 3-degree so the Petersen graph is called a cubic graph with ten vertices and fifteen edges.
Petersen graph is vertex-transitive and edge-transitive and is symmetrical. An example can be
seen in Figure 6 is an example of Petersen graph.

Figure 6. Petersen Graph

Definition 2.13 The Generalized Petersen graph is denoted by GPnx where n and k are positive
integers with 2 < 2k < n, which is a graph with

V(GPnyk) = {Ug, Uy, o) Upn_1, Vg Vqy oo Up_q b
E(GPn_k) = {uiu{iﬂ),viv{”k), uivi| i=01,..,n—1},
where the addition in the index (i + 1), (i + k) is modulo n. The Generalized Petersen graph GPnx
has three types of edges, namely outer edge, inner edge, and spoke. The outer edge connects

vertices u; and ug,q). The inner edge connects vertices v; and vy, while the spoke connects
vertices u; and v;. The following in Figure 7 is an example of a generalized Petersen graph.
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(a) (b)
Figure 7. Generalized Petersen (a) GPs,1, (b) GP5,1

2.5 Properties of Hamiltonians and Hypohamiltonians

A graph is called Hamiltonian if it has a Hamilton cycle. A graph is called
Hypohamiltonian if it is not Hamiltonian but can become Hamiltonian if one vertex is removed.
Ginting and Banjarnahor et al. [5] the following definitions are explained.

Definition 2.14 A Hamiltonian graph is a graph that has a Hamiltonian cycle. A Hamiltonian
path is a path V point (V) traversed in graph G exactly only once, where the origin vertex v, #
end vertex v,, while a closed Hamiltonian path is a path V point (V) traversed in graph G exactly
only once, where the origin vertex v, # end vertex v,.. The following in Figure 8 is an example
of Hamiltonian graph.

Figure 8. Hamiltonian Graph

Definition 2.15 A graph G is called Hypohamiltonian if the graph G is not Hamiltonian, but if
one vertex (v) is deleted every time, then the subgraph G — v is Hamiltonian. An example of a
Hypohamiltonian graph can be seen in Figure 9. A graph G is said to be Hypohamiltonian if it
satisfies the following definition.
(a) A graph G is called Hypohamiltonian if it is not Hamiltonian,
(b) If one vertex is removed from graph G, it will form a Hamiltonian cycle so that it is
Hypohamiltonian.

Figure 9. is an example of Hypohamiltonian Graph

3. RESULTS AND DISCUSSION

The author proves the existence of the Hamiltonian cycle and the validity of the
Hamiltonian and Hypohamiltonian properties on the generalized Petersen graph (GPue) for n
=13, 14, 15, 16, 17.18, 19, 20, 21, 22, 23, 24. The first step is to prove the validity of the
Hamiltonian and Hypohamiltonian properties on the Petersen Graph. The Petersen graph can
be represented in the following figure. First, it is proven that the Hamiltonian property applies
to Petersen graphs which has been discussed in Imam et al. [14], with the results of the
discussion showing that the Petersen graph is not a Hamiltonian because the Petersen graph
does not have a Hamiltonian cycle. This will be proven by the following theorem:
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Teorema 3.1 The Petersen graph is not a Hamiltonian.

BUKTI. It will be shown that the Petersen graph G is not Hamiltonian by using the edge-transitive
Petesen graph property. Given the Petersen graph G in Figrure 10 as follows.

.V
Jad

vy 3

Figure 10. Petersen Graph (GPs,2)
Based on Figure 10, a Petersen graph G is given. Suppose that
A = {V,V,, V303, V30, U, Vs, Vs V3 },
B = {v,v}, v,v}, V305, V,V;, VsVE},
C = {v1vs3, v3v5, VsV, VoV, V4 V1 },

is a subset of E(G). Based on Definition 2.13, it is known that A is a set of outer edges, B
is a set of spokes, and Cis a set of inner edges. Based on Definition 2.12, suppose also that H is
a cycle of the Petersen graph. Suppose H is a Hamiltonian. H must use an even number of sides
of B, so that H has two or four sides because the maximum side that B has is five.

Based on Definition 2.12, the Petersen graph is edge transitive and is symmetrical, it can
be assumed that v,v; € E(H), so one of v,v, or vsv; € E(H) and it can also be assumed that
vV, € E(H). Then, based on Definition 2.13, it is known that the Petersen graph is a cubic
graph, so vsv; € E(H). Therefore, v,vs and vsve € E(H). If H using two edges of B, namely that
vviand vy, € E(H), then v,v3,v3v, € E(H). However, this situation requires that the vertices
v; and v have 3-degree on H. Consequently, | E(H) N B| = 4.

Based on the symmetry properties in Definition 2.12, there is one of v,v3, v,v, € E(H). it
can be assumed that v,v, € E(H). Since vyv, € E(H), this requires v,v;, v3v; € E(H). Then,
there exists v,'v,, vs'vy, € E(H)due to| E(H) N B| = 4 and v,v; € E(H). This situation requires
subcycles of vy, vs, Vs, Vs, Vs, V3 E(H). This is a contradiction and H not exist so the assumption
that H is Hamiltonian is false. So, the Petersen graph is not a Hamiltonian. [

Next, it will be proven that the Hypohamiltonian property applies to graphs Petersen which has
been discussed in Imam et al. [15], with the results of the discussion it was found that the Petersen graph
is Hypohamiltonian because it meets the definition of Hypohamiltonian. This will be proven by the
following theorem:

Teorema 3.2 The Petersen graph is a Hypohamiltonian.

BUKTI. It will be shown that the petersen graph G is Hypohamiltonian by using the definition of
Hypohamiltonian. Based on Figure 10, it can be seen that the Petersen graph has two types of vertices,
namely inner vertex and outer vertex. Based on Definition 2.15, the Petersen graph is said to be
Hypohamiltonian if both conditions are met. Take any vertex on GPs5,2 and delete any vertex on the inner
vertex. Assume that the vertex v; is deleted, so a Hamilton cycle can be created as follows.

H = {vy, v, 03,04, V4, V3, V3, Vs, Vs, V1 }-
So, GPs2— vy Hamiltonian. In GPs2there is not exist the Hamilton cycle. However, each
) 1

deletion of one vertex in GPsz2results in GPs2— v, having a Hamilton cycle. So, it is proven that
GPs2 1s Hamiltonian. [
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Next, the author constructs steps to prove the validity of the Hamiltonian and Hypohamiltonian
properties of the Petersen graph in general GPx 6 with values n =13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24. The proof will be carried out by finding the existence of Hamilton cycles carried out one by one
starting from the smallest n value to the largest n value. The author estimates that there will be three
possibilities that apply to the generalized Petersen graph of GPns, namely Hamiltonian,
Hypohamiltonian, and neither. Based on Definition 2.13, for the GPn6, the values of n that satisfy
2 < 2k < n are more than or equal to 13. It will be shown that the Hamiltonian and
Hypohamiltonian properties apply for each value of n. The author uses one of the mathematical
software, namely Geogebra, to represent GPn¢1n a figure.

(1) Generalized Petersen graph (GP:13,6)

Figure 11. Generalized Petersen graph (GP13,)

Based on Figure 11, no Hamilton cycle was found in GPi36 so it is not Hamiltonian.

(2) Generalized Petersen graph (GP14,6)
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Vg
Figure 12. Generalized Petersen graph (GPi4,)

Based on Figure 12, there is a Hamilton cycle as follows.

— I ! ! I ! ! !
H = {vy,v1, V7, V13, Vs, V11, V3, Vs, Vg, Vg, V7, Vs, Us, V4, U3, Uy,

! ! ! 1 1 ! !
V3, Vg, V14 V) V12, Var Vios V10s Vi1s V2o V13) Vias V1)

So, GP14,6 1s Hamiltonian.

(3) Generalized Petersen graph (GP1s,6)

Figure 13. Generalized Petersen graph (GPi5,6)

Based on Figure 13, no Hamilton cycle was found in GP1s56 so it is not Hamiltonian.

(4) Generalized Petersen graph (GP1s,)
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Figure 14. Generalized Petersen graph (GPis,)
Based on Figure 14, there is a Hamilton cycle as follows.

— ! I ! 1 I 1A ! !
H = {vy,v1,v7, V13, V3, Vs, V15, Vs, V11, V11, V1gs Vo Vg, V7, Ve, Us, Vs, V3, Uy
! ! ! ! I ! ! !
V2, Vg, V14 Va» Vigs Ve Ve V1) Vi2) V13, V1as Viss V16 V1 -

So, GPi6,6 1s Hamiltonian.

(5) Generalized Petersen graph (GP17,)

Figure 15. Generalized Petersen graph (GPi7,6)

Based on Figure 15, no Hamilton cycle was found in GP17,6 so it is not Hamiltonian.
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(6) Generalized Petersen graph (GPise)

Figure 16. Generalized Petersen graph (GPis,)

Based on Figure 16, no Hamilton cycle was found in GPiss so it is not Hamiltonian.

(7) Generalized Petersen graph (GP2o,6)

vy

V22

V2
157} Q ’
@.,»,.g.‘.
L~ QL

| /
"’/I

Figure 17. Generalized Petersen graph (GP2o,6)

Based on Figure 17, there is a Hamilton cycle as follows.
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— ! ! ! 1A I ! ! ! ! !
H = {vy,v1,V7, V13, V19, Vg, V11, V17, V3, Vo', V15, Vs, V14, V13, V12, V11, V10) Vo, Ug V7, Vs,
! ! r ! ! ! ! ! ! !
Vs, Uy, V3, V2, V2, Vg, V1) V20, Vs V12, Vigs Var V10 V16 » Vier V17) Vigr V19, V20 V1 }-

So, GP20,6 1s Hamiltonian.

(8) Generalized Petersen graph (GP21,6)

Figure 18. Generalized Petersen graph (GPs1,6)

Based on Figure 18, no Hamilton cycle was found in GP21,6 so it is not Hamiltonian.

(9) Generalized Petersen graph (GPa2,6)

Figure 19. Generalized Petersen graph (GP2,6)

Based on Figure 19, there is a Hamilton cycle as follows.

_— ! ! ! ! ! ! ! ! ! ! !
H = {vy,v1, V7, V13, V19, V3, Vg, V15, V21, Vs, Vi1 V17 V17, V16, V15, V14) V13, V12,
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! ! ! 1 ! ! ! I ! !
V11 V10, V9, Vg V7, Vg, Us, Uy, V3, U2 U3, Vg, V14, V20, Var V10s V16) V225 Vs V12,
!
V18, V18, V19,V20, V21, V22, vy}
So, GP22,6 1s Hamiltonian.

(10) Generalized Petersen graph (GP23,6)

Figure 20. Generalized Petersen graph (GP23,)

Based on Figure 20, no Hamilton cycle was found in GP236 so it is not Hamiltonian.

(11) Generalized Petersen graph (GPz4,6)

V24

\4
2
v
23 Vs
V22 v
'y ’ 4
ot v24 1 v2'
V21 ' 923 v, v
22 3 5
’ v4'
Va1
v V' v
20 , 5 6
v 5
0
’
6
.
Vig 19 : v,
vy
vy !
v
8 v
v v, 8
18 17 ,
Vi, ’
’
Yi7 v, v VI Y9
15 , Y% 1
v 14 13 Y10
16
Vis Y11
Vi4 Vi3 V12

Figure 21. Generalized Petersen graph (GPa4,6)
Based on Figure 21, no Hamilton cycle was found in GP246 so it is not Hamiltonian.

Based on the discussion above, it is found that in GPnswith n = 1(mod 13), n = 3(mod 13),
n = 7(mod 13), n = 9(mod 13) we find the existence of a Hamiltonian cycle so that it is a
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Hamiltonian. Whereas in GPy6with n = 0(mod 13), n = 2(mod 13), n = 4(mod 13), n = 5(mod13),
n = 6(modi3), n = 8(mod 13), n = 10(mod13), n = 11(mod 13) no Hamiltonian cycle was found so
there are two possibilities, namely Hypohamiltonian or neither.

Teorema 3.3 Generalized Petersen graph GPnswith n = I(mod 13), n = 3(mod 13), n = 7(mod
13), n = 9(mod 13) are Hamiltonian.

BUKTI. It will be proven that the Petersen graph is generalized GPn¢ with n = 1(mod 13), n = 3(mod
13), n = 7(mod 13), n = 9(mod 13) are Hamiltonians by indicating the existence of the Hamilton cycle. In
the generalized Petersen graph GPu6 with n = 1(mod 13), n = 3(mod 13), n = 7(mod 13), n = 9(mod 13)
there is a cycle that passes through all vertices exactly once starting at the starting vertex namely v1
and returns to the end point, namely v1. The cycle pattern is as follows.

_ I ’ ! ! ! I ’
H = {v,, V1,07, V13, e, Vp_5, Un—ss s Vg, Ugy eee s Uy ooy Un—ay Un—ao Vs » V1 -

The cycle obtained is a Hamilton cycle. So, it is proven GPn¢ with n = 1(mod 13), n = 3(mod
13), n = 7(mod 13), n = 9(mod 13) is a Hamiltonian. [J

Teorema 3.4 Generalized Petersen graph GPnswith n = 0(mod 13), n = 2(mod 13), n = 4(mod
13), n = 5(mod 13), n = 6(mod 13), n = 8(mod 13), n = 10(mod13), n = 11(mod 13) are not
Hamiltonian.

BUKTI. It will be proven that the Petersen graph is GPx,¢ with n = 0(mod 13), n = 2(mod 13), n = 4(mod
13), n=5(mod 13), n = 6(mod 13), n = 8(mod 13), n = 10(mod13), n = 11(mod 13) are not Hamiltonians
by showing the absence of Hamiltonian cycles.

In GPy6 with n = 0(mod 13), there is a cycle as follows.

I 1A ! r 1A ! ! ! ! ! ! !
H = {vy,v1,V7, V13, V6, V12, Vs, Vi1, Vs, V1o » V3, Vg , V2, Vg, U3,
Vy, Vs, Ve, V7, Vg, Vo, V10, V11, V12, V13) V1 }-

It can be seen that vertex vg' is not crossed. So GPne with n = 0(mod 13) is not Hamiltonian.
In GPy s with n=2(mod 13), there is a cycle as follows.

I ! ! I ! 1A I !
H = {vy,v1, V7, V13, Vs, V10, V10) Vo, Vg, V7, Ve, Vs, Vs V3, V3, V3, Vg, V1a,
r ! ! ! r I I !
Vs, V11, V11, V12, V12, V3, V9, V1s, Vs V12, Vi) Va3 s Vias V1s) V1 )-

It can be seen that vertex v,, dan v,," are skipped twice. So GPas with n = 2(mod 13) is not
Hamiltonian.

In GPnewith n = 4(mod 13), there is a cycle as follows.

I ! ! I ! 1A ! ! !
H = {vy,v1, V7, V13, V3, V2, V3, Vg, Vs, Vg, V7, Vg, Vg, V14, V3, Vo, V15
r ! r ! ! ! ! !
V4 Vio» Vier Vs V11, Vi7) Vs Vizs V1) V135 V14 Visy V16 Vi7) V1 )

It can be seen that vertex vy, v;q,v;; are not crossed. So GPne with n = 4(mod 13) is not
Hamiltonian.

In GPy6 with n = 5(mod 13), there is a cycle as follows.
I ! ! !
H = {vy,v1, V7, V13, V13, V12, V11, V10 Vo) Vg, V7, Vs, Us, Vs, V3, Uz, V3,
r ! ! ! r I ! ! ! 1
Vg, V14) V14, V15, V15, V3, Vg, V15, V15, V165 V165 Vo V10) V16r V16

! ! ! ! 1 ! ! !
V17, V17, Vg, Vi1, V17, V17, V1gs Viss Ve, Vi) Vigs Vg V1)

It can be seen that vertex v;s, Vis, V16, V16, V17, V17, Vig Vig are skipped twice. So GPne with n =
5(mod 13) is not Hamiltonian.
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In GPy 6 with n = 6(mod 13), there is a cycle as follows.

I ! ! I ! I I ! I ! ! I I ! ! !
H = {vy,v1,V7, V13, V19, Vg, V12, Vi) Vs, Vi1, V17, V' V1o Vies V3 Vo, V1s
! ! I
V3, V3, V3, Vs, Vs, Vs, V7, Vg, Vg, V1as V14 Vis) V16 V175 Vigs V19, V1 }-

It can be seen that vertex vq, v;g, V11, V12, V13, V14 are not crossed. So GPue with n = 6(mod 13) is
not Hamiltonian.

In GPy s with n = 8(mod 13), there is a cycle as follows.

— ! ! ! ! r ! !
H = {vy, 1,7, V13, V19, Vs V10) Vies V1er Vi) V1ar V13) Vi2s V11, Vios Voo
! ! I ! ! 1A ! !
Vg, V7, Ve, Vs, Vs, V3, Uz, V3, Vg, V14, V20, Vs, V11, V17, V17, V1) V1ss
r ! r ! ! ! !
V3, V9, Vis, V21, Ve, V12, Vigs Vs Vios V20, V21, V1 }-

It can be seen that vertex v,;5 and v,3’ are skipped twice. So GPas with n = 8(mod 13) is not
Hamiltonian.

In GPy s with n=10(mod 13), there is a cycle as follows.

! ! ! ! r ! 1A ! I !
H = {vy,v1, V7, V13, V19, V3, V2, V3, Uy, Vs, Vs, V7, Vg, Vg, V14, V20, V3, Vs, Vo, V10,
! ! r ! !
V11, V12, V13, V14, V15, V155 V21, Var V10) V16) V16 V170 V18: V19s V20, V21, V22)
r ! ! ! !
V22, Vs, Vi1, V17, V23, Va3, V1 }-

It can be seen that vertex v, vi,, vig are not crossed. So GPns with n = 10(mod 13) is not
Hamiltonian.

In GPyswith n=11(mod 13), there is a cycle as follows.

— ! ! ! ! r ! !
H = {vy,v1,V7, V13, V19, V4 V10) Vies V16 Visr Viar V13) Vi2s V11, V1os Voo
! ! I ! ! 1A ! !
Vg, V7, Ve, Vs, Vs, V3, U2, V3, Vg, V14, V20, Vs, V11, V17, V17, V1) V1ss
! ! r ! ! ! !
V3, V9, Vis, V21, Ve, V12) Vigs Viss Vigs V20, V21, U1}

It can be seen that vertex vyq, V31, Vay, Vg2, Uns, Vg3, Uaa, V34 are skipped twice. So GPne with
n = 11(mod 13) is not Hamiltonian.

So, it is proven that GPnewith n = 0(mod 13), n = 2(mod 13), n = 4(mod 13), n = 5(mod
13), n =6(mod 13), n = 8(mod 13) are not Hamiltonian. [J

Based on the discussion in the previous section, it has been proven that there are some
GPns which are not Hamiltonian, so there are two possibilities, namely that the
Hypohamiltonian property applies or neither. Furthermore, in this section further proof is made
of the validity of Hypohamiltonian properties.
Teorema 3.7 Generalized Petersen graph GPnswith n = 0(mod 13) is Hypohamiltonian.

BUKTI. It will be shown that the Petersen graph is generalized GPns with n = O(mod 13) is
Hypohamiltonian. Based on Definition 2.15, the generalized Petersen graph GPns with n = 0(mod 13)
already satisfies the first condition, namely it is not a Hamiltonian. Next, check the applicability of the
second condition. Take any point on the inner vertex. Suppose that point v;" is deleted, so that it will
form a cycle starting from the initial point v; and returning to point v,. The cycle is as follows.

! ! I ! ! I ! I !
H = {vy,V;,V3, V4, Vs, Vs, V7, V7, V13, Vs, V12, Vs, V11, Vay V10) V3,
r ! r
Vg, V3, Vg, Vg, Vg, V10, V11, V12) V13, V14s V1 }

The cycle obtained is a Hamiltonian cycle so GPns—v," Hamiltonian. Both conditions are met, so it can
be concluded that GPn,¢ with n = 0(mod 13) is Hypohamiltonian. 0

4. CONCLUSIONS
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Based on the discussion above, the properties of the Hamiltonian and Hypohamiltonian on
Petersen graphs and Petersen graphs generalized GPns and GPn7 can be concluded that The
Petersen graph is not Hamiltonian, but Hypohamiltonian. The generalized Petersen graph
GPrefor n = 1(mod 13), n = 3(mod 13), n = 7(mod 13), n = 9(mod 13) are Hamiltonian. For n =
0(mod 13) it is Hypohamiltonian. Meanwhile, n = 2(mod 13), n = 4(mod 13), n = 5(mod 13), n =
6(mod 13), n = 8(mod 13) are neither. The generalized Petersen graph GPy,7 for n = 1(mod 15)
and n = 9(mod 15) are Hamiltonian. For n = 0(mod 15), n = 2(mod 15), and n = 8(mod 15) are
Hypohamiltonian. For n = 3(mod 15), n = 4(mod 15), n = 5(mod 15), n = 6(mod 15), n = 7(mod
15) neither.
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