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Abstract 
This article discusses the Hamiltonian and Hypohamiltonian properties of Generalized Petersen Graphs 
(𝐺𝑃!,#	&	𝐺𝑃!,$). A Hamiltonian graph is a graph that has a Hamiltonian cycle; i.e. having a cycle 
that passes through each vertex exactly once. A Hypohamiltonian graph is if it is not a 
Hamiltonian graph, but if one vertex is removed it will be Hamiltonian. The Petersen graph is a 
cubic graph with ten vertices and fifteen edges and each vertex is of degree three. The generalized 
Petersen graph is denoted 𝐺𝑃!,%, for positive numbers n and k with 2 ≤ 2k < 𝑛. The Petersen graph 
is not a Hamiltonian graph, but is Hypohamiltonian. In the Generalized Petersen graph for 𝐺𝑃!,# 
for n ≡ 1(mod 13), n ≡ 3(mod 13), n ≡ 7(mod 13), n ≡ 9(mod 13) is a Hamiltonian, for n ≡ 0(mod 
13) is a hypohamiltonian, and for n ≡ 2(mod 13), n ≡ 4(mod 13), n ≡ 5(mod 13), n ≡ 6(mod 13), 
n ≡ 8(mod 13) neither. 
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1. INTRODUCTION 
 

Mathematics is a basic science that is used as a thinking tool to solve problems in various 
fields of science. Mathematics has a very broad scope, one of which is graph theory. Graph 
theory is a unique field because its modeling applications are usefully for applications in various 
things such as transportation, communication networks, computer science, biology, economics, 
engineering, health and social sciences. Graphs are one of the applications used to date using 
theory. According to West et al. [13, h. 1], graph theory succeeded in solving its first problem in 
1973, namely the problem of the Koningsberg bridge in the city of Koningsberg. In Russia there 
is the Pregal river which flows around the island of Kneiphof and branches into two tributaries. 
This problem was solved by a Swiss mathematician named Leonhard Euler. Euler's solution 
represents this problem in a graph with four landmasses as vertex and seven bridges as edges. 

Until now, graph theory has developed in various fields of representation, with modeling 
applications that can be used to make it easier to analyze problems in graphs. In graph theory 
there are several properties of the connectedness of a graph that are very interesting to study, 
namely the Hamiltonian and Hypohamiltonian. A graph is called Hamiltonian if it has cycles 
that pass through all the vertices. The cycle of a graph that contains each vertex is called a 
Hamilton cycle. A graph is called Hypohamiltonian if every time one vertex is removed it 
becomes Hamiltonian. Based on the relationship between these two properties, it is very 
interesting to associate it with a generalized Petersen graph. 

According to Potanka et al. [9, h. 32], the Petersen graph is known as a regular graph of 3-
degree at all its vertices and has been generalized. The Petersen graph is very popular to study 
because it is unique, serves as an example of refutation in various places and has various 
interesting properties. In Ginting and Banjarnahor et al. [5] discussing the relationship 
between graph properties in Petersen graphs. Then, Wallis et al. [12, h. 34] discusses the 
properties of the Hamiltonian, Chen and Fan et al. [1] discuss the properties of the 
Hypohamiltonian. Furthermore, Ryjacek et al. [10] study the properties of the Hamiltonian in 
3-connected independent graphs. The discussion which only focuses on independent graphs and 
the properties of the Hamiltonian only attracts the author's interest in discussing further the 
properties of the Hamiltonian and Hypohamiltonian in generalized Petersen graphs (GPn,6). 
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In the second part, several theoretical bases that support this research are explained. The third part 
discusses this problem, namely proving the existence of the Hamiltonian cycle and the validity of the 
Hamiltonian and Hypohamiltonian properties on generalized Petersen graphs (GPn,6). Then continued 
to the fourth part by explaining the conclusions of the discussion of this article. 

 
 

2. PRELIMINARIES 
 
2.1 Graph 
 Graphs are a branch of mathematics that is widely used to describe various existing 
structures. According to Munir et al. [8, h, 356], the definition of a graph is as follows. 
 
Definition 2.1 The graph G is a pair of sets (V(G), E(G)) where V(G) is a non-empty and finite 
set of objects called vertex, and E(G) is a set of unordered pairs of different vertices in V(G) are 
called edges. The set of vertices in G is denoted by V(G) and the set of edges is denoted by E(G). 
Whereas the number of elements in V(G) is called the order of G and is denoted by p(G) and the 
number of elements in E(G) is called the measure and is denoted by q(G).  
 
Definition 2.2 Edge e = (u, v) is called to connect vertex u and v if e = (u, v) is an edge in the 
graph G, then u and v are called to be directly connected (adjacent), u and e and v and e are 
called to be directly related (incidents). Edge e is denoted by e = uv.  
 
2.1.2 Simple Graph and Unsimple Graph 
 According to Kusmira and Taufiqurrochman et al. [6], graphs can be grouped based on 
the presence of rings or double edges in a graph, namely simple graphs and unsimple graphs. 
 
Definition 2.3 A simple graph G is a graph that has ∀ vertices (V) ∄ edges (E), namely ring 
edges and double edges. In a simple graph, the edges are in unordered pairs. Meanwhile, a 
unsimple graph G is a graph that has ∀ vertices (V), ∃ circular edges or double edges or both. 
Below, Figure 1 (a) is an example of a simple graph and (b) is an example of a unsimple graph. 

 
Figure 1. (a) Simple Graph, (b) Unsimple Graph 

 
2.1.2 Directed Graph and Undirected Graph 
 Furthermore, Slamin et al. [11, h. 12] it is also explained that graphs can also be grouped 
into directed graphs and undirected graphs. 
 
Definition 2.4 A directed graph G is a graph whose edges are not the same length and has a 
direction where (u, v) ≠ (v, u) and a sequence of pairs of vertices must be connected by different 
edges. Meanwhile, an undirected graph G is a graph whose edges are the same size where (u, 
v) = (v, u) and the order of pairs of vertices connected by the edges is not taken into account. An 
example can be seen in Figure 2 (a) is a directed graph and (b) is an undirected graph. 
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Figure 2. (a) Directed Graph, (b) Undirected Graph 

2.2 Degree 
According to West et al. [13, h. 34], the sum of the degrees of each vertex on a graph is 

called the graph degree. The degree of a vertex is the number of edges connected to that vertex. 
 
Definition 2.5 The degree of vertices v in graph G, denoted by d(v), is the number of edges in 
G that are invident to v. A vertex with degree zero is called an isolated vertex. The minimum 
degree of graph G is denoted by δ(G) and the maximum degree is denoted by ∆(G). 
 
2.3 Connected Graph  

In the connectivity of a graph, Makalew, Montolalu and Mananoas et al. [7] introduce 
several terms, namely walk, path, trail, and cycle. 
 
Definition 2.6 A connected graph G is an undirected graph G if ∀ pairs of vertices u and v in 
the set V ∃ a path from u to v and if not, then G is called an unconnected graph. 
 
Definition 2.7 A walk is a finite sequence of vertices and edges that begins and ends such that 
each edge is connected to the vertices before and after it. Let u and v be points on graph G. The 
walk u − v on graph G is an alternating finite sequence. A walk that has no edges is called a 
trivial path. 
 
Definition 2.8 A walk where all edges are different is called a trail. An open walk that passes 
through all different vertices is called a path. Therefore, every path is definitely a trail, but not 
all trails are paths. A closed walk with each edge distinct is called a circuit. A closed walk with 
different vertices at each vertex is called a cycle. Therefore, every cycle is definitely a circuit, 
but not all circuits are cycles. 
 
2.4 Custom Graph 
 Following are several special graphs that have been introduced by Chia, Ong, and 
Arumugm et al. [2], Deo et al. [3, h. 2], Frick and Singleton et al. [4], Potanka et al. [9, h. 32], 
which are discussed, including regular graphs, complete graphs, cubic graphs, Petersen graphs, 
and generalized Petersen graphs. 
 
Definition 2.9 A regular graph is a graph in which all vertices have the same degree. If each 
vertex has r-degree, then the graph is called a regular graph of r-degree. The complete graph 
Kn is a regular graph of (n-1)-degree. If graph G has n vertices and r-degree then graph G has 
!&
'

 edges. In Figure 3 below is an example of a regular graph.  

 
Figure 3. Regular Graph of Degree (a) 0, (b) 1, (c) 2, (d) 3 

 
Definition 2.10 A complete graph is a graph that has ∀ vertices (V), ∃ edges (E) connected 
between every two vertices and is denoted by Kn, which is (n-1)-regular graph with order p = n 
and size q = !{!)*)

'
. In Figure 3 above and Figure 4 below is an example of a complete graph
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Figure 4. Complete Graph (a) K1, (b) K2, (c) K3 

 

 
Definition 2.11 A cubic graph is a graph where every vertex v has 3-degree, or is often called 
a regular graph of 3-degree. In Figure 5 below is an example of a cubic graph. 

 
Figure 5. Cubic Graph 

 
Definition 2.12 The Petersen graph is regular of 3-degree. In a Petersen graph all the vertices 
are of 3-degree so the Petersen graph is called a cubic graph with ten vertices and fifteen edges. 
Petersen graph is vertex-transitive and edge-transitive and is symmetrical. An example can be 
seen in Figure 6 is an example of Petersen graph. 

 
Figure 6. Petersen Graph 

 
Definition 2.13 The Generalized Petersen graph is denoted by GPn,k where n and k are positive 
integers with 2 ≤ 2k < n, which is a graph with 
 

𝑉*𝐺𝑃!,%+ = {𝑢,, 𝑢*, … , 𝑢!)*, 	𝑣,, 𝑣*, … , 𝑣!)*	}, 
 

𝐸*𝐺𝑃!,%+ = 4𝑢-𝑢{-.*), 𝑣-𝑣{-.%), 𝑢-𝑣-5	𝑖 = 0, 1, … , 𝑛 − 1	}, 
 
where the addition in the index (i + 1), (i + k) is modulo n. The Generalized Petersen graph GPn,k 
has three types of edges, namely outer edge, inner edge, and spoke. The outer edge connects 
vertices 𝑢- and 𝑢{-.*). The inner edge connects vertices 𝑣* and 𝑣{-.%), while the spoke connects 
vertices 𝑢- and 𝑣*. The following in Figure 7 is an example of a generalized Petersen graph. 
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Figure 7. Generalized Petersen (a) GP3,1, (b) GP5,1 

 
2.5 Properties of Hamiltonians and Hypohamiltonians 
 A graph is called Hamiltonian if it has a Hamilton cycle. A graph is called 
Hypohamiltonian if it is not Hamiltonian but can become Hamiltonian if one vertex is removed. 
Ginting and Banjarnahor et al. [5] the following definitions are explained. 
 
Definition 2.14 A Hamiltonian graph is a graph that has a Hamiltonian cycle. A Hamiltonian 
path is a path ∀ point (V) traversed in graph G exactly only once, where the origin vertex 𝑣, 	≠ 
end vertex 𝑣!, while a closed Hamiltonian path is a path ∀ point (V) traversed in graph G exactly 
only once, where the origin vertex 𝑣, 	≠ end vertex 𝑣!. The following in Figure 8 is an example 
of Hamiltonian graph. 

 
Figure 8. Hamiltonian Graph 

 
Definition 2.15 A graph G is called Hypohamiltonian if the graph G is not Hamiltonian, but if 
one vertex (v) is deleted every time, then the subgraph G − v is Hamiltonian. An example of a 
Hypohamiltonian graph can be seen in Figure 9. A graph G is said to be Hypohamiltonian if it 
satisfies the following definition. 

(a) A graph G is called Hypohamiltonian if it is not Hamiltonian, 
(b) If one vertex is removed from graph G, it will form a Hamiltonian cycle so that it is 

Hypohamiltonian. 

 
Figure 9. is an example of Hypohamiltonian Graph 

 
 

3. RESULTS AND DISCUSSION 
 

The author proves the existence of the Hamiltonian cycle and the validity of the 
Hamiltonian and Hypohamiltonian properties on the generalized Petersen graph (GPn,6) for n 
= 13, 14, 15, 16, 17.18, 19, 20, 21, 22, 23, 24. The first step is to prove the validity of the 
Hamiltonian and Hypohamiltonian properties on the Petersen Graph. The Petersen graph can 
be represented in the following figure. First, it is proven that the Hamiltonian property applies 
to Petersen graphs which has been discussed in Imam et al. [14], with the results of the 
discussion showing that the Petersen graph is not a Hamiltonian because the Petersen graph 
does not have a Hamiltonian cycle. This will be proven by the following theorem: 
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Teorema 3.1 The Petersen graph is not a Hamiltonian. 
 
BUKTI. It will be shown that the Petersen graph G is not Hamiltonian by using the edge-transitive 
Petesen graph property. Given the Petersen graph G in Figrure 10 as follows. 

 
Figure 10. Petersen Graph (GP5,2) 

 
Based on Figure 10, a Petersen graph G is given. Suppose that 
 

𝐴 = {𝑣*𝑣', 𝑣'𝑣/, 𝑣/𝑣0, 𝑣0𝑣1, 𝑣1𝑣*},                
 

          𝐵 = {𝑣*𝑣*2 , 𝑣'𝑣'2 , 𝑣/𝑣/2 , 𝑣0𝑣02 , 𝑣1𝑣12 },                   
 

   𝐶 = {𝑣*2𝑣/2 , 𝑣/2𝑣12 , 𝑣12𝑣'2 , 𝑣'2𝑣02 , 𝑣02𝑣*2}, 
 

is a subset of E(G). Based on Definition 2.13, it is known that A is a set of outer edges, B 
is a set of spokes, and C is a set of inner edges. Based on Definition 2.12, suppose also that H is 
a cycle of the Petersen graph. Suppose H is a Hamiltonian. H must use an even number of sides 
of B, so that H has two or four sides because the maximum side that B has is five. 

Based on Definition 2.12, the Petersen graph is edge transitive and is symmetrical, it can 
be assumed that 𝑣*𝑣*2 ∈ 𝐸(𝐻), so one of  𝑣*𝑣' or 𝑣1𝑣* ∈ 𝐸(𝐻) and it can also be assumed that 
𝑣*𝑣' ∈ 𝐸(𝐻).  Then, based on Definition 2.13, it is known that the Petersen graph is a cubic 
graph, so 𝑣1𝑣* ∉ 𝐸(𝐻). Therefore, 𝑣0𝑣1 and 𝑣1𝑣12 ∈ 𝐸(𝐻). If H using two edges of B, namely that 
𝑣*𝑣*2and 𝑣1𝑣* ∈ 𝐸(𝐻), then 𝑣'𝑣/, 𝑣/𝑣0 ∈ 𝐸(𝐻). However, this situation requires that the vertices 
𝑣*2  and 𝑣12  have 3-degree on H. Consequently, |E(H) ∩ B| = 4.  

Based on the symmetry properties in Definition 2.12, there is one of 𝑣'𝑣'2 , 𝑣0𝑣02 ∈ 𝐸(𝐻). it 
can be assumed that 𝑣0𝑣02 ∈ 𝐸(𝐻). Since 𝑣/𝑣0  ∉ 𝐸(𝐻), this requires 𝑣'𝑣/ , 𝑣/𝑣/2 ∈ 𝐸(𝐻). Then, 
there exists	𝑣'′𝑣02 , 𝑣1′𝑣'2 , ∈ 𝐸(𝐻)due to|E(H) ∩ B| = 4 and 𝑣'𝑣'2 ∉ 𝐸(𝐻). This situation requires 
subcycles of 𝑣'2 , 𝑣12 , 𝑣1, 𝑣0, 𝑣02 , 𝑣'2  𝐸(𝐻). This is a contradiction and H not exist so the assumption 
that H is Hamiltonian is false. So, the Petersen graph is not a Hamiltonian. � 

 
Next, it will be proven that the Hypohamiltonian property applies to graphs Petersen which has 

been discussed in Imam et al. [15], with the results of the discussion it was found that the Petersen graph 
is Hypohamiltonian because it meets the definition of Hypohamiltonian. This will be proven by the 
following theorem: 

 
Teorema 3.2 The Petersen graph is a Hypohamiltonian. 
 
BUKTI. It will be shown that the petersen graph G is Hypohamiltonian by using the definition of 
Hypohamiltonian. Based on Figure 10, it can be seen that the Petersen graph has two types of vertices, 
namely inner vertex and outer vertex. Based on Definition 2.15, the Petersen graph is said to be 
Hypohamiltonian if both conditions are met. Take any vertex on GP5,2 and delete any vertex on the inner 
vertex. Assume that the vertex 𝑣*2  is deleted, so a Hamilton cycle can be created as follows. 
 

𝐻 = {𝑣*, 𝑣', 𝑣'2 , 𝑣02 , 𝑣0, 𝑣/, 𝑣/2 , 𝑣12 , 𝑣1, 𝑣*}.                
 

So, GP5,2 − 𝑣*2  Hamiltonian. In GP5,2 there is not exist the Hamilton cycle. However, each 
deletion of one vertex in GP5,2 results in GP5,2 − 𝑣! having a Hamilton cycle. So, it is proven that 
GP5,2  is Hamiltonian. � 
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Next, the author constructs steps to prove the validity of the Hamiltonian and Hypohamiltonian 
properties of the Petersen graph in general GPn,6 with values n = 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24. The proof will be carried out by finding the existence of Hamilton cycles carried out one by one 
starting from the smallest n value to the largest n value. The author estimates that there will be three 
possibilities that apply to the generalized Petersen graph of GPn,6, namely Hamiltonian, 
Hypohamiltonian, and neither. Based on Definition 2.13, for the GPn,6, the values of n that satisfy 
2 ≤ 2k < n are more than or equal to 13. It will be shown that the Hamiltonian and 
Hypohamiltonian properties apply for each value of n. The author uses one of the mathematical 
software, namely Geogebra, to represent GPn,6 in a figure. 

 
 
 
 
 
 
 
 
(1) Generalized Petersen graph (GP13,6) 

 
Figure 11. Generalized Petersen graph (GP13,6) 

 
Based on Figure 11, no Hamilton cycle was found in GP13,6 so it is not Hamiltonian. 
 
 

(2) Generalized Petersen graph (GP14,6) 
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Figure 12. Generalized Petersen graph (GP14,6) 

 
Based on Figure 12, there is a Hamilton cycle as follows. 

 
                                           𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣12 , 𝑣**2 , 𝑣/2 , 𝑣32 , 𝑣3, 𝑣4, 𝑣$, 𝑣#, 𝑣1,	𝑣0, 𝑣/, 𝑣',	 
                                                   𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣#2 , 𝑣*'2 , 𝑣02 , 𝑣*,2 , 𝑣*,, 𝑣**, 𝑣*', 𝑣*/, 𝑣*0, 𝑣*}.                        
  

So, GP14,6 is Hamiltonian. 
 
 
 
 

(3) Generalized Petersen graph (GP15,6) 

 
Figure 13. Generalized Petersen graph (GP15,6) 

 
Based on Figure 13, no Hamilton cycle was found in GP15,6 so it is not Hamiltonian. 

 
(4) Generalized Petersen graph (GP16,6) 
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Figure 14. Generalized Petersen graph (GP16,6) 

 
Based on Figure 14, there is a Hamilton cycle as follows. 

 
                              𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣12 , 𝑣**′, 𝑣**, 𝑣*,, 𝑣3, 𝑣4,	𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣' 
                                       𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣#2 , 𝑣*'2 , 𝑣*', 𝑣*/, 𝑣*0, 𝑣*1, 𝑣*#, 𝑣*}.                              
  

So, GP16,6 is Hamiltonian. 
 
 
 
(5) Generalized Petersen graph (GP17,6) 

 
Figure 15. Generalized Petersen graph (GP17,6) 

 
Based on Figure 15, no Hamilton cycle was found in GP17,6 so it is not Hamiltonian. 
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(6) Generalized Petersen graph (GP18,6) 

 
Figure 16. Generalized Petersen graph (GP18,6) 

 
Based on Figure 16, no Hamilton cycle was found in GP18,6 so it is not Hamiltonian. 
 
 
 
 
 
 

 
(7) Generalized Petersen graph (GP20,6) 

 
Figure 17. Generalized Petersen graph (GP20,6) 

 
Based on Figure 17, there is a Hamilton cycle as follows. 
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                𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣/′, 𝑣3′, 𝑣*1′, 𝑣*1, 𝑣*0,	𝑣*/, 𝑣*', 𝑣**, 𝑣*,, 𝑣3, 𝑣4,𝑣$, 𝑣#,	 
                         𝑣1, 𝑣0, 𝑣/, 𝑣',𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣',2 , 𝑣#2 , 𝑣*'2 , 𝑣*42 , 𝑣02 , 𝑣*,′, 𝑣*#′, 𝑣*#, 𝑣*$, 𝑣*4, 𝑣*3,𝑣',, 𝑣*}.		         
  

So, GP20,6 is Hamiltonian. 
 
 

(8) Generalized Petersen graph (GP21,6) 

 
Figure 18. Generalized Petersen graph (GP21,6) 

 
Based on Figure 18, no Hamilton cycle was found in GP21,6 so it is not Hamiltonian. 

 
 
 
(9) Generalized Petersen graph (GP22,6) 

 
Figure 19. Generalized Petersen graph (GP22,6) 

 
Based on Figure 19, there is a Hamilton cycle as follows. 

 
                    𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣'*′, 𝑣1′, 𝑣**′, 𝑣*$′, 𝑣*$,	𝑣*#, 𝑣*1, 𝑣*0, 𝑣*/, 𝑣*', 



Putti, et al, JOMSO Vol 1 No. 2 Jan 2024, pp. 72-86 
 

 
 

83 

                            𝑣**	𝑣*,, 𝑣3, 𝑣4,𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣',𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣',2 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣''2 , 𝑣#2 , 𝑣*'2 , 
                            𝑣*42 , 𝑣*4, 𝑣*3,𝑣',, 𝑣'*, 𝑣'', 𝑣*}.                                                                             
 

So, GP22,6 is Hamiltonian. 
 

(10)  Generalized Petersen graph (GP23,6) 

 
Figure 20. Generalized Petersen graph (GP23,6) 

 
Based on Figure 20, no Hamilton cycle was found in GP23,6 so it is not Hamiltonian. 
 
 
 
 
 

(11) Generalized Petersen graph (GP24,6) 

 
Figure 21. Generalized Petersen graph (GP24,6) 

 
Based on Figure 21, no Hamilton cycle was found in GP24,6 so it is not Hamiltonian. 

 
Based on the discussion above, it is found that in GPn,6 with n ≡ 1(mod 13), n ≡ 3(mod 13), 

n ≡ 7(mod 13), n ≡ 9(mod 13) we find the existence of a Hamiltonian cycle so that it is a 
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Hamiltonian. Whereas in GPn,6 with n ≡ 0(mod 13), n ≡ 2(mod 13), n ≡ 4(mod 13), n ≡ 5(mod13), 
n ≡ 6(mod13), n ≡ 8(mod 13), n ≡ 10(mod13), n ≡ 11(mod 13) no Hamiltonian cycle was found so 
there are two possibilities, namely Hypohamiltonian or neither. 

 
Teorema 3.3 Generalized Petersen graph GPn,6 with n ≡ 1(mod 13), n ≡ 3(mod 13), n ≡ 7(mod 
13), n ≡ 9(mod 13) are Hamiltonian. 
 
BUKTI. It will be proven that the Petersen graph is generalized GPn,6 with n ≡ 1(mod 13), n ≡ 3(mod 
13), n ≡ 7(mod 13), n ≡ 9(mod 13) are Hamiltonians by indicating the existence of the Hamilton cycle. In 
the generalized Petersen graph GPn,6 with n ≡ 1(mod 13), n ≡ 3(mod 13), n ≡ 7(mod 13), n ≡ 9(mod 13) 
there is a cycle that passes through all vertices exactly once starting at the starting vertex namely v1 
and returns to the end point, namely v1. The cycle pattern is as follows. 
 

𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , … , 𝑣!)12 , 𝑣!)1, … , 𝑣', 𝑣'2 , … , 𝑣!2 , … , 𝑣!)02 , 𝑣!)0, 𝑣!, , 𝑣*}.             
 

The cycle obtained is a Hamilton cycle. So, it is proven GPn,6 with n ≡ 1(mod 13), n ≡ 3(mod 
13), n ≡ 7(mod 13), n ≡ 9(mod 13) is a Hamiltonian. � 

 
Teorema 3.4 Generalized Petersen graph GPn,6 with n ≡ 0(mod 13), n ≡ 2(mod 13), n ≡ 4(mod 
13), n ≡ 5(mod 13), n ≡ 6(mod 13), n ≡ 8(mod 13), n ≡ 10(mod13), n ≡ 11(mod 13) are not 
Hamiltonian. 

 
BUKTI. It will be proven that the Petersen graph is GPn,6 with n ≡ 0(mod 13), n ≡ 2(mod 13), n ≡ 4(mod 
13), n ≡ 5(mod 13), n ≡ 6(mod 13), n ≡ 8(mod 13), n ≡ 10(mod13), n ≡ 11(mod 13) are not Hamiltonians 
by showing the absence of Hamiltonian cycles.  
 

In GPn,6 with n ≡ 0(mod 13), there is a cycle as follows. 
 

𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣#2 , 𝑣*'2 , 𝑣12 , 𝑣**2 , 𝑣0′, 𝑣*,′, 𝑣/′, 𝑣3′, 𝑣'′, 𝑣', 𝑣/, 
		𝑣0, 𝑣1, 𝑣#, 𝑣$, 𝑣4, 𝑣3, 𝑣*,, 𝑣**, 𝑣*', 𝑣*/, 𝑣*}.		 

 
It can be seen that vertex 𝑣4′ is not crossed. So GPn,6 with n ≡ 0(mod 13) is not Hamiltonian. 
 

In GPn,6 with n ≡ 2(mod 13), there is a cycle as follows.  
 
                                    𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣02 , 𝑣*,2 , 𝑣*,, 𝑣3, 𝑣4, 𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣', 𝑣'2 , 𝑣42 , 𝑣*02 , 
                                            𝑣12 , 𝑣**2 , 𝑣**, 𝑣*', 𝑣*'2 , 𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣#2 , 𝑣*'2 , 𝑣*', 𝑣*/	, 𝑣*0, 𝑣*1, 𝑣*}.                
 
It can be seen that vertex 𝑣*' dan 𝑣*'′ are skipped twice. So GPn,6 with n ≡ 2(mod 13) is not 
Hamiltonian. 
 

In GPn,6 with n ≡ 4(mod 13), there is a cycle as follows.  
 
                                    𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣'2 , 𝑣', 𝑣/, 𝑣0, 𝑣1, 𝑣#, 𝑣$, 𝑣4, 𝑣42 , 𝑣*02 , 𝑣/2 , 𝑣32 , 𝑣*12  
                                            𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣#2 , 𝑣*'2 , 𝑣*', 𝑣*/	, 𝑣*0, 𝑣*1, 𝑣*#, 𝑣*$, 𝑣*}.               
 
It can be seen that vertex 𝑣3, 𝑣*,, 𝑣**  are not crossed. So GPn,6 with n ≡ 4(mod 13) is not 
Hamiltonian. 
 

In GPn,6 with n ≡ 5(mod 13), there is a cycle as follows.  
 
                                    𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*/, 𝑣*', 𝑣**, 𝑣*,, 𝑣3, 𝑣4, 𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣', 𝑣'2 ,	 
                                            𝑣42 , 𝑣*02 , 𝑣*0, 𝑣*1, 𝑣*12 , 𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣*1, 𝑣*#	, 𝑣*#2 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣*#, 
                                            𝑣*$, 𝑣*$2 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣*$, 𝑣*4, 𝑣*42 , 𝑣#2 , 𝑣*'2 , 𝑣*42 , 𝑣*4, 𝑣*}.                          
 
It can be seen that vertex 𝑣*1, 𝑣*12 , 𝑣*#, 𝑣*#2 , 𝑣*$, 𝑣*$2 , 𝑣*4, 𝑣*42 	are skipped twice. So GPn,6 with n ≡ 
5(mod 13) is not Hamiltonian. 
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In GPn,6 with n ≡ 6(mod 13), there is a cycle as follows.  
 
                                    𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣#′, 𝑣*'2 , 𝑣*42 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣0′, 𝑣*,2 , 𝑣*#2 , 𝑣/2 , 𝑣32 , 𝑣*12  
                                            𝑣'2 , 𝑣', 𝑣/, 𝑣0, 𝑣1, 𝑣#, 𝑣$, 𝑣4, 𝑣42 , 𝑣*02 , 𝑣*0, 𝑣*1, 𝑣*#, 𝑣*$, 𝑣*4, 𝑣*3, 𝑣*}.           
 
It can be seen that vertex 𝑣3, 𝑣*,, 𝑣**, 𝑣*', 𝑣*/, 𝑣*0 are not crossed. So GPn,6 with n ≡ 6(mod 13) is 
not Hamiltonian. 
 

In GPn,6 with n ≡ 8(mod 13), there is a cycle as follows.  
 

     𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣*#, 𝑣*1, 𝑣*0, 𝑣*/, 𝑣*', 𝑣**, 𝑣*,, 𝑣3,	 
                                            𝑣4, 𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣', 𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣',2 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣*$, 𝑣*4, 𝑣*42 , 
                                            𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣'*2 , 𝑣#2 , 𝑣*'2 , 𝑣*42 , 𝑣*4, 𝑣*3, 𝑣',, 𝑣'*, 𝑣*}.                                  
 
It can be seen that vertex 𝑣*4 and 𝑣*4′ are skipped twice. So GPn,6 with n ≡ 8(mod 13) is not 
Hamiltonian. 
 

In GPn,6 with n ≡ 10(mod 13), there is a cycle as follows.  
 

     𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣'2 , 𝑣', 𝑣/, 𝑣0, 𝑣1, 𝑣#, 𝑣$, 𝑣4, 𝑣42 , 𝑣*02 , 𝑣',2 , 𝑣/2 , 𝑣32 , 𝑣3, 𝑣*,,		 
                                            𝑣**, 𝑣*', 𝑣*/, 𝑣*0, 𝑣*1, 𝑣*12 , 𝑣'*2 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣*#, 𝑣*$, 𝑣*4, 𝑣*3, 𝑣',, 𝑣'*, 𝑣'',	  
                                            𝑣''2 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣'/2 , 𝑣'/, 𝑣*}.                                  
 
It can be seen that vertex 𝑣#, 𝑣*'2 , 𝑣*42  are not crossed. So GPn,6 with n ≡ 10(mod 13) is not 
Hamiltonian. 
 

In GPn,6 with n ≡ 11(mod 13), there is a cycle as follows.  
 

     𝐻 = {𝑣*, 𝑣*2 , 𝑣$2 , 𝑣*/2 , 𝑣*32 , 𝑣02 , 𝑣*,2 , 𝑣*#2 , 𝑣*#, 𝑣*1, 𝑣*0, 𝑣*/, 𝑣*', 𝑣**, 𝑣*,, 𝑣3,	 
                                            𝑣4, 𝑣$, 𝑣#, 𝑣1, 𝑣0, 𝑣/, 𝑣', 𝑣'2 , 𝑣42 , 𝑣*02 , 𝑣',2 , 𝑣12 , 𝑣**2 , 𝑣*$2 , 𝑣*$, 𝑣*4, 𝑣*42 , 
                                            𝑣/2 , 𝑣32 , 𝑣*12 , 𝑣'*2 , 𝑣#2 , 𝑣*'2 , 𝑣*42 , 𝑣*4, 𝑣*3, 𝑣',, 𝑣'*, 𝑣*}                 
                  

It can be seen that vertex 𝑣'*, 𝑣'*2 , 𝑣'', 𝑣''2 , 𝑣'/, 𝑣'/2 , 𝑣'0, 𝑣'02  are skipped twice. So GPn,6 with 
n ≡ 11(mod 13) is not Hamiltonian. 
 

So, it is proven that GPn,6 with n ≡ 0(mod 13), n ≡ 2(mod 13), n ≡ 4(mod 13), n ≡ 5(mod 
13), n ≡ 6(mod 13), n ≡ 8(mod 13) are not Hamiltonian. � 
 

Based on the discussion in the previous section, it has been proven that there are some 
GPn,6 which are not Hamiltonian, so there are two possibilities, namely that the 
Hypohamiltonian property applies or neither. Furthermore, in this section further proof is made 
of the validity of Hypohamiltonian properties. 
Teorema 3.7 Generalized Petersen graph GPn,6 with n ≡ 0(mod 13) is Hypohamiltonian. 
 
BUKTI. It will be shown that the Petersen graph is generalized GPn,6 with n ≡ 0(mod 13) is 
Hypohamiltonian. Based on Definition 2.15, the generalized Petersen graph GPn,6 with n ≡ 0(mod 13) 
already satisfies the first condition, namely it is not a Hamiltonian. Next, check the applicability of the 
second condition. Take any point on the inner vertex. Suppose that point 𝑣*′  is deleted, so that it will 
form a cycle starting from the initial point 𝑣* and returning to point 𝑣*. The cycle is as follows. 
 
                                    𝐻 = {𝑣*, 𝑣', 𝑣/, 𝑣0, 𝑣1, 𝑣#, 𝑣$, 𝑣$2 , 𝑣*/2 , 𝑣#2 , 𝑣*'2 , 𝑣12 , 𝑣**2 , 𝑣02 , 𝑣*,2 , 𝑣/2 ,	 
                                            𝑣32 , 𝑣'2 , 𝑣42 , 𝑣4, 𝑣3, 𝑣*,, 𝑣**, 𝑣*', 𝑣*/, 𝑣*0, 𝑣*}                                           
 
The cycle obtained is a Hamiltonian cycle so GPn,6 − 𝑣*′  Hamiltonian. Both conditions are met, so it can 
be concluded that GPn,6 with n ≡ 0(mod 13) is Hypohamiltonian.                                                                 � 
  

4. CONCLUSIONS 
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Based on the discussion above, the properties of the Hamiltonian and Hypohamiltonian on 

Petersen graphs and Petersen graphs generalized GPn,6 and GPn,7 can be concluded that The 
Petersen graph is not Hamiltonian, but Hypohamiltonian. The generalized Petersen graph 
GPn,6 for n ≡ 1(mod 13), n ≡ 3(mod 13), n ≡ 7(mod 13), n ≡ 9(mod 13) are Hamiltonian. For n ≡ 
0(mod 13) it is Hypohamiltonian. Meanwhile, n ≡ 2(mod 13), n ≡ 4(mod 13), n ≡ 5(mod 13), n ≡ 
6(mod 13), n ≡ 8(mod 13) are neither. The generalized Petersen graph GPn,7 for n ≡ 1(mod 15) 
and n ≡ 9(mod 15) are Hamiltonian. For n ≡ 0(mod 15), n ≡ 2(mod 15), and n ≡ 8(mod 15) are 
Hypohamiltonian. For n ≡ 3(mod 15), n ≡ 4(mod 15), n ≡ 5(mod 15), n ≡ 6(mod 15), n ≡ 7(mod 
15) neither. 
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