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Abstract
This study explores the use of multiple seasonal Moving Average (MA) models for short-term load
forecasting, focusing on identifying the most suitable model order, which may involve subset, multi-
plicative, or additive components. While many seasonal MA models for time series forecasting tend
to assume non-multiplicative structures, often without performing statistical tests, this research in-
troduces a new procedure to determine the most appropriate multiple MA order. The study includes
a case analysis of short-term load forecasting in a specific country. The findings of the study indicate
that incorporating multiple multiplicative parameters can significantly improve model accuracy.
Keywords : multiple seasonal, MA, subset, multiplicative, additive

1. INTRODUCTION

Box-Jenkins initially presented the IMA approach, which has since grown to be the most widely
used model for predicting univariate time series data [1]. This model has been originated from the
moving average model (MA) and the combination of the differencing and MA, or IMA models. To ac-
commodate various real-world data scenarios, the moving average (MA) model and the integrated with
MA (IMA) model can be modified to differing degrees. When two seasonal elements are included in the
model, it is called the multiple or double seasonal MA model. If we define a nonseasonal moving aver-
age operator of order q by θq(B)= (

1−θ1B−θ2B2 −·· ·−θqBq)
, first seasonal moving average operator

of order Q1 by ΘQ1

(
BS1

) = (
1−Θ1B−Θ2B2S1 −·· ·−ΘQ1 BQ1S1

)
, second seasonal moving average op-

erator of order Q2 by ΨQ2

(
BS2

) = (
1−Ψ1B−Ψ2B2S2 −·· ·−ΨQBQ2S2

)
. Economically, the nonseasonal

and seasonal moving average model can be expressed as Lt = θq(B)ΘQ1

(
BS1

)
ΨQ2

(
BS2

)
ϵt. it contain

q+2,Q1 +2,Q2 +2 unknown parameters µ,θ1, · · · ,θqΘ1, · · · ,ΘQ1 and Ψ1, · · · ,ΨQ2 ,σ2
ε which in practice

have to be estimated from the data. In the case where seasonal components are included in this model,
then the model is called as the Seasonal Integrated MA model.

Box-Jenkins procedure that contains three main stages to build an MA model, that is model
identification, model estimation and model checking, is usually used for determining the best MA
model for certain time series data. Seasonal IMA models ∇d∇D1

1440∇D2
10080 = (1−B)

(
1−B1440)(

1−B10080)
have been applied in many different forecasting domains up to this point. For load forecasting, a
variety of forecasting methods have been employed, with varying degrees of success. In forecasting
research, double SARIMA models are frequently utilized as benchmarks. e.g., [2] - [5].

Various forecasting methods have been applied in different sectors, with notable studies high-
lighting the use of SARIMA and machine learning approaches. Suhartono [6] explored time series
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forecasting using seasonal autoregressive integrated moving average (SARIMA) models, Voronin [7]
focused on electrical load and solar generation forecasting in hybrid energy systems, Bala [8] used ma-
chine learning and hybrid approaches to forecast energy consumption in the United Kingdom, Wang
et al. [9] analyzed electricity price instability over time using time series methods, while Debnath and
Mourshed [10] reviewed various forecasting methods in energy planning models. For instance, Kramar
and Alchakov [11] evaluated machine learning techniques for forecasting seasonal time series. Wu et
al. [12] employed a hybrid SARIMA-LSTM approach for forecasting daily tourist arrivals. Similarly,
Dinata et al. [13] compared short-term load forecasting methods using data from Kalimantan. In the
energy sector, Peshkov and Alsova [14] explored autoregressive models for forecasting active energy
complexes. Durova et al. [15] applied ensemble algorithms for short-term electricity price forecasting.
In another study, Durova et al. [16] also employed autoregressive models to forecast active energy com-
plexes. Petrusevich [17] explored time series forecasting using high-order ARIMA functions for various
applications, Sadaei et al. [18] introduced a STLF method based on fuzzy time series, seasonality, and
long memory processes. Hachim [19] applied time series approaches to predict electricity production
and demand in Russia. Lastly, Nigam et al. [20] used time series modeling for river runoff forecasting.

Although numerous studies have concentrated on model estimation, the identification stage is
actually the most vital part in constructing MA models. Improper model identification can result in
errors during the estimation phase and lead to higher costs for re-identification. In particular, for MA
models, most previous research has generally relied on the multiplicative model without initially test-
ing the significance of the multiplicative parameter. This assumption implies that the multiplicative
MA model presumes a significant relationship between the non-seasonal and seasonal parameters.
Additionally, widely used statistical software like MINITAB and SPSS often only offer tools for fitting
the multiplicative model.

The main contributions of this study include the application of a fast-processing statistical
model, the Double Seasonal IMA, which has not been previously used on actual electricity load data.
The model is applied to a real dataset from a case study in Poland. The study demonstrates that
the Double Seasonal IMA model is more effective in predicting electrical demand data with a double
seasonal pattern and associated errors. By adhering to the principle of parsimony, the model offers a
cost-effective solution for electrical data operators, making it highly suitable for rapid electricity load
forecasting.

2. RESEARCH METHODS

2.1. Procedures of Modeling MA

Most previous studies typically used the regular multiplicative MA model directly when the
ACF and PACF indicated that the data contained both non-seasonal and double seasonal orders. In
this study, we develop and consider a more precise model identification step, particularly at lags 1440
and 10080, as an implication of double seasonal orders for additive, subset, and multiplicative models
on load data. As an example, it may appear that using the option Q=(1 10080) is the solution, but
the MA(1) process also affects past values; what is actually needed are the MA parameters at lags 1,
10080, and 10081. One option is to define a subset model with distinct parameters at these lags, or
alternatively, a factored model can be specified, representing the model as the product of an MA(1)
model and an MA(10080) model.

2.2. Sample Autocorrelations (ACF) and Partial ACF

The autocorrelation plot illustrates the correlation between the current values of the series and
its past values. For the selected model, the parameters are estimated based on the data. These plots
are referred to as autocorrelation functions because they illustrate the extent of correlation with pre-
vious values of the series, based on the number of periods in the past (or lag) at which the correlation
is calculated.

The output of the sample autocorrelation function plot and sample partial autocorrelation func-
tion plot from the identify statement is displayed in Figure 2.
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FIGURE 1. Box-Jenkins Methodology

TABLE 1. Behavior of the ACF and PACF for values at nonseasonal ARMA Models

for Causal and Invertible ARMA Models (p,q)
ARMA Model AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag(q) Tails off
PACF Cuts off after lag (p) Tails off Tails off

TABLE 2. Behavior of the ACF and PACF for values at seasonal ARMA Models

for Causal and Invertible Seasonal ARMA Models (P,Q)
ARMA Model AR(P)s MA(Q)s ARMA(P,Q)
ACF Tails off at lags ks, k=1,2,..., Cuts off after lag Q1s1, Q2s2 Tails off at lags ks
PACF Cuts off after lag P1s1, P2s2 Tails off at lags ks Tails off at lags ks

3. RESULTS AND DISCUSSION

3.1. Data

The data used in this study was provided by the National Grid, which is the transmission com-
pany in Poland. The data consists of the 30 weeks of minute-by-minute observations for electricity
demand in Poland from 1 January 2015 to 30 October 2020. The series consists of 201598 observa-
tions, and is shown in Fig. 3. This gave 201,600 minute-by-minute observations for estimation, and
100,800 for evaluation.

3.2. Identification

The Box-Jenkins method employs two graphical tools for modeling traditional statistical models:
the autocorrelation function (ACF) and the partial autocorrelation function (PACF).

LISTING 1. language=R

# Model1 for subset MA
# Model2 for mult ip l i cat ive MA: use theta2
# Model3 for addit ive MA: use theta3

# Define the parameters for each model
theta1 <− c ( −0.8 , rep (0 , 10) , −0.9 , 0 .3 )
theta2 <− c ( −0.8 , rep (0 , 10) , −0.9 , 0 .54)
theta3 <− c ( −0.8 , rep (0 , 10) , −0.9)
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FIGURE 2. Previous ACF Model 3 for the subset with trunca-
tion after lag, ACF Model 1 for the subset with truncation after
lag q (a), PACF Model 1 for the subset with exponential decay
q (b), ACF Model 2 for the multiplicative model with a break
after lag q (c), PACF Model 2 for the multiplicative model with
exponential decay break (d), and PACF Model 2 for the additive
model with the tail of exponential decay (e) PACF Model 2 for
the additive model with tail exponential decay
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FIGURE 3. Load demand series (a), Load demand series af-
ter Ln (b), Load demand series before differencing with Ln (c),
Load demand series after differencing with Ln (d), and His-
togram plot series after Ln (e) Histogram plot series after Ln
with Differencing
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# Compute the ACF and PACF for model1 using theta1
acf . model1 <− ARMAacf( ar = 0 , ma = theta1 , 10080)
pacf . model1 <− ARMAacf( ar = 0 , ma = theta1 , 10080 , pacf = TRUE)

# Trim the f i r s t value from ACF for model1 (ACF i s zero at lag 0)
acf . model1 <− acf . model1 [2:10080]

# Create the plots
win . graph ( ) # Open a new graphical window
par ( mfrow = c (1 , 2 ) ) # Set the layout to 1 row and 2 columns

# Plot the ACF
plot ( acf . model1 , type = "h" , xlab = "Lag " , ylim = c (−1, 1 ) )
abline (h = 0) # Add a horizontal l ine at y = 0

# Plot the PACF
plot ( pacf . model1 , type = "h" , xlab = "Lag " , ylim = c (−1, 1 ) )
abline (h = 0) # Add a horizontal l ine at y = 0

Plot autocorrelations and limits might model load as a combination of an MA (1) process reflect-
ing short term dependencies and an MA (1440) model reflecting the seasonal pattern. It might seem
that the way to do this is with the option Q = (1 1440 1441 10080 10081 11520 11521), but the MA (1)
process also operates in past years, need MA parameters at lags 1 1440 1441 10080 10081 11520 and
11521. We can specify a subset model with separate parameters at these lags, or can specify a factored
model that represents the model as the product of Q = (1 1440 1441 10080 10081 11520 11521) model
and MA (1) model.

Identifying the dependence orders of the autocovariances generating function models for autoco-
variances generating function of a MA with q = (1) Q = (1) (1440) (10080)

Lt =σ2
ϵ (1−θ1L −θ1440L 1440 +θ1θ1440L 1441 −Θ10080L 10080 +θ1Θ10080L 10081 +θ1440Θ10080L 11520

−θ1θ1440Θ10080L 11521)(
1−θ1L −1 −θ1440L −1440 +θ1θ1440L −14441 −Θ10080L −10080

+θ1Θ10080L −10081 +θ1440Θ10080L −11520 −θ1θ1440Θ10080L −11521)
Identifying the dependence orders of the autocovariances generating function models for auto-

covariances generating function of MA q = (1) Q = (1 1440 1441 10080 10081 11520 11521) is of the
process is

Lt =σ2
ϵ (1− (θ1 +Θ1)L +θ1Θ1L 2 −θ1440L 1440 + (θ1θ1440 +θ1440Θ1 +θ1θ1440)L 1441 −θ1θ1440Θ1L 1442

−Θ10080L 10080 + (Θ1Θ10080 +θ1Θ10080)L 10081 −θ1Θ1Θ10080L 10082 +θ1440Θ10080L 11520

− (θ1Θ1440Θ10080 +θ1440Θ1Θ10080)L 11521 +θ1θ1440Θ1Θ10080L 11522)(
1− (θ1 +Θ1)L −1

+θ1Θ1L −2 −θ1440L −1440 + (θ1θ1440 +θ1440Θ1 +θ1θ1440)L −1441 −θ1θ1440Θ1L −1442

−Θ10080L −10080 + (Θ1Θ10080 +θ1Θ10080)L −10081 −θ1Θ1Θ10080L −10082

+θ1440Θ10080L −11520 − (θ1θ1440Θ10080 +θ1440Θ1Θ10080)L −11521

+θ1θ1440Θ1Θ10080L −11522)
Identifying the dependence orders of the autocovariances generating function models for autoco-

variances generating function of MA q = (1) Q = (1 1440 1441 10080 10081) is of the process is
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Lt = (1− (Θ1+ θ1)L 1 − (θ1440)L 1440 −Θ10080L 10080 + (θ1Θ1)L 2 + (Θ1Θ10080 +θ1Θ10080)L 10081

+ (Θ1Θ1440 +θ1440θ1)L 1441 −Θ10080Θ1θ1L 10082 +θ1440Θ10080L 11520

− (Θ1θ1440Θ10080 +Θ10080θ1440θ1)L 11521 +θ1Θ1440Θ1Θ10080L 11522)(
1− (Θ1 +θ1)L −1

+ (θ1Θ1)L −2 − (θ1440)L −1440 −Θ10080ϵt−10080L −10080 + (Θ1Θ10080 +Θ1Θ10080)L −10081

+ (Θ1θ1440 +θ1440θ1)L −1441 −Θ10080Θ1θ1L −10082 +θ1440Θ10080L −11520

− (Θ1θ1440Θ10080 +Θ10080θ1440θ1)L −11521 +θ1θ1440Θ1Θ10080L −11522)
The stationarity of the time series is tested as the first step in the modelling procedure. To

acquire a fair estimate of stationarity, utilise the partial auto correlation function (PACF) and auto
correlation function (ACF) plots of the time series.

a. Option Q = (1 1440 1441); MA Operator
(
1−Θ1B−Θ1440B1440 −Θ1441B1441)

, ACF cuts off
after lag Qs and PACF tails off at lags ks (k = 1,1440,1441) and since {ϵt} is white noise the expected
value of the MA process is E (Lt)= E

(
µ+ϵt −Θ1ϵt−1 −Θ1440ϵt−1440 +Θ1441ϵt−1441

)=µ, also its variance
is Var(Lt)= γLt (0)=Var

(
µ+ϵt −Θ1ϵt−1 −Θ1440ϵt−1440+ Θ1441ϵt−1441)=σ2 (

1+Θ2
1 +Θ2

1440 +Θ2
1441

)
,

b. Option Q = (1,1440); MA Operator
(
1−Θ1B−Θ1440B1440)

, ACF cuts off after lag Qs and PACF
Tails off at lags ks (k = 1,1440) and E (Lt)= E

(
µ+ϵt −Θ1ϵt−1− Θ1440ϵt−1440)= µ, Var(Lt)= γLt (0)=

Var
(
µ+ϵt −Θ1ϵt−1− Θ1440ϵt−1440)=σ2 (

1+Θ2
1 +Θ2

1440
)
,

c. Option Q = (1) (1440); MA Operator (1−Θ1B)
(
1−Θ1440B1440)

, ACF cuts off after lag Qs and
PACF Tails off at lags ks (k = (1) (1440)) and E (Lt)= E

(
µ+ϵt− Θ1ϵt−1 −Θ1440ϵt−1440)=µ, Var(Lt)=

γLt (0)=Var
(
µ+ϵt −Θ1ϵt−1− Θ1440ϵt−1440)=σ2 (

1+Θ2
1 +Θ2

1440 + (Θ1Θ1440)2
)
,

The ACF measures the correlation of a time series value with other values from the same time
series at various delays. PACF evaluates the connection between a time series value and a value with
a different lag. The ACF is derived from the linear correlation between each value of the time series
Lt and the other values at different lags, such as Lt−1,Lt−1440,Lt−10080,Lt−10081,Lt−11520,Lt−11521,
and so on. On the other hand, the PACF yields a similar result but eliminates the influence of other
values. For instance, in the ACF, the correlation between Lt and Lt−2 is affected by Lt−1, but the
PACF removes this influence. Both the ACF and PACF have individual interpretations, as well as a
combined interpretation when considered together. The types of MA models were chosen to verify the
significance of a multiplicative parameter.

LISTING 2. Double Seasonal MA Model Selection Algorithm in R

# 1. Fit the subset double seasonal MA model
# 2 . Test the double seasonal mult ip l i cat ive parameters s ign i f i cance
i f ( mult ipl icat ive_param_signi f icant ) {
# 3 . Test i f double seasonal mult ip l i cat ive parameters equal

the product o f non−seasonal and seasonal c o e f f i c i e n t s
i f ( multiplicative_param == ( non_seasonal_coef * seasonal_coef ) ) {

# 4 . Check i f double seasonal i ty i s present
i f ( is_double_seasonal ) {

# 5 . Choose Double Seasonal Mult ip l i cat ive MA as
the appropriate model
model <− " Double Seasonal Mult ip l i cat ive MA"

} e lse {
# 6 . Choose double seasonal Mult ip l i cat ive MA as

the appropriate model
model <− " Mult ip l i cat ive MA"

}
} e lse {
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# 7. Choose double seasonal Subset MA as the appropriate model
model <− " Subset MA"

}
} e lse {
# 8 . Choose Additive MA as the appropriate model

model <− " Additive MA" }

Initially, by focusing on the seasonal lags s1 = 1440 and seasonal lags s2 = 10080 , the ACF and
PACF characteristics of the series show a prominent peak at lag lags k = 1s in the autocorrelation
function, with smaller peaks at lags k = 2s,3s, along with additional peaks at k = 1s,2s,3s, and 4s in
the partial autocorrelation function.

It seems that either: (i) the ACF cuts off after lag 1s, while the PACF gradually decreases at the
seasonal lags, (ii) the ACF cuts off after lag 3s, with the PACF tailing off at the seasonal lags, or (iii)
both the ACF and PACF are gradually decreasing at the seasonal lags.

Referring to Table 2, this implies that either (i) additive, (ii) multiplicative, or (iii) subset. The
theoretical discussion regarding ACF and PACF for these models concentrated on the orders of non-
seasonal and seasonal moving averages, i.e.

∇d∇D1
1440Lt =

(
1−θ1B−Θ1440B1440 +θ1Θ1440B1441)

εt (1)

∇d∇D1
1440∇D2

10080Lt =
(
1−θ1B−Θ1440B1440 +θ1Θ1440B1441)(

1−Ψ10080B10080)
εt (2)

This section introduces several modifications to the IMA (Integrated Moving Average) model
aimed at addressing seasonal and nonstationary patterns. Often, the influence of past values is most
significant at multiples of an underlying seasonal lag s. The first step in the modeling process involves
testing the stationarity of the time series. To obtain a reliable estimate of stationarity, it is recom-
mended to use the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF)
plots of the time series.

Additive MA. The operator option L̂t = ∇d∇D1
10080 ln(Lt −µ) of the additive MA q = (1,10080),

Q = (1,10080) as follows:

L̂t =
(
1−θ1L

1 −θ10080L
10080)(

1−Θ1L
1 −Θ10080L

10080)
εt (3)

Next, we collect like terms (i.e., terms with the same power of L ):

ζ=



−(Θ1 +θ1), k = 0,
−(Θ1 +θ1), k = 1,
θ1Θ1, k = 2,
−(Θ10080 +θ10080), k = 10080,
−(Θ10081 +θ10081), k = 10081,
(θ1Θ10080 +θ10080Θ1), k = 10081,
(θ1Θ10081 +θ10081Θ1), k = 10082,
θ10080Θ10080, k = 20160,
(θ10080Θ10081 +θ10081Θ10080), k = 20161,
θ10081Θ10081, k = 20162,

(4)

L̂t = εt − (Θ1 +θ1)εt−1 +θ1Θ1εt−2 − (Θ10080 +θ10080)εt−10080

− (Θ10081 +θ10081)εt−10081 + (θ1Θ10080 +θ10080Θ1)εt−10081

+ (θ1Θ10081 +θ10081Θ1)εt−10082

+θ10080Θ10080εt−20160

+ (θ10080Θ10081 +θ10081Θ10080)εt−20161

+θ10081Θ10081εt−20162
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FIGURE 4. Previous ACF Model 3 for the subset with trunca-
tion after lag, ACF Model 1 for the subset with truncation after
lag q (a), PACF Model 1 for the subset with exponential decay
q (b), ACF Model 2 for the multiplicative model with a break
after lag q (c), PACF Model 2 for the multiplicative model with
exponential decay break (d), and PACF Model 2 for the additive
model with the tail of exponential decay (e) PACF Model 2 for
the additive model with tail exponential decay
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Multiplicative MA. The option of the multiplicative operator L̂t = ∇d∇D1
10080 ln(Lt −µ) of the

MA q = (1)(10080), Q = (1)(10080) as follows:

L̂t =
(
1−θ1L

1)(
1−θ10080L

10080)(
1−Θ1L

1)(
1−Θ10080L

10080)
εt. (5)

Now, we combine all these results:

L̂t = εt −Θ10080εt−10080 −Θ1εt−1 +Θ1Θ10080εt−10081

−θ10080εt−10080 +θ10080Θ10080εt−20160 +θ10080Θ1εt−10081 −θ10080Θ1Θ10080εt−20161

−θ1εt−1 +θ1Θ10080εt−10081 +θ1Θ1εt−2 −θ1Θ1Θ10080εt−10082+
θ1θ10080εt−10081 −θ1θ10080Θ10080εt−20161 −θ1θ10080Θ1εt−10082 +θ1θ10080Θ1Θ10080εt−20162

Next, we collect like terms (i.e., terms with the same power of L ):

ζ=



1, k = 0,
−(Θ1 +θ1), k = 1,
θ1Θ1, k = 2,
−(Θ10080 +θ10080), k = 10080,
(Θ1Θ10080 +θ10080Θ1 +θ1Θ10080 +θ1θ10080), k = 10081,
−(θ1Θ1Θ10080 +θ1θ10080Θ1), k = 10082,
θ10080Θ10080, k = 20160,
−(θ10080Θ1Θ10080 +θ1θ10080Θ10080), k = 20161,
θ1θ10080Θ1Θ10080, k = 20162,

(6)

Subset MA. The option of the subset MA operator q = (1,10080,10081) and Q = (1,10080,10081)
in as follow:

∇d∇D1
10080∇D2

10081 ln(L̂t −µ)= (
1−θ1L

1 −θ10080L
10080 −θ10081L

10081)(
1−Θ1L

1 −Θ10080L
10080 −Θ10081L

10081)
εt. (7)

Thus, the final expanded form of the polynomial product is:

L̂t = εt−(Θ1+θ1)εt−1+θ1Θ1εt−2−(Θ10080+θ10080)εt−10080−(Θ10081+θ10081)+(θ1Θ10080+θ10080Θ1)εt−10081

+ (θ1Θ10081 +θ10081Θ1)εt−10082 +θ10080Θ10080εt−20160

+ (θ10080Θ10081 +θ10081Θ10080)εt−20161 +θ10081Θ10081εt−20162

Next, we collect like terms (i.e., terms with the same power of L ):

ζ=



1, k = 0,
−(Θ1 +θ1), k = 1,
θ1Θ1, k = 2,
−(Θ10080 +θ10080), k = 10080,
−(Θ10081 +θ10081)+ (θ1Θ10080 +θ10080Θ1), k = 10081,
(θ1Θ10081 +θ10081Θ1), k = 10082,
θ10080Θ10080, k = 20160,
(θ10080Θ10081 +θ10081Θ10080), k = 20161,
θ10081Θ10081, k = 20162,

(8)

which are polynomial functions of orders P1, P2, and P3 respectively. These delay polynomials
allow AR to model daily, weekly, and annual cycles. These are polynomial functions of orders P1, P2,
and P3 respectively. These delay polynomials allow the modeling of daily, weekly, and annual cycles,
as well as the d-th and D-th non-seasonal periods, and the seasonal difference ∇d = (1−L )d ,∇D1

S1
=

(1−L 1440)D1 ,∇D2
S2

= (1−L 10080)D2 .
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3.3. Estimation

SAS is utilized in this step, and the following code provides an example of the program used
to estimate subset, multiplicative, and additive MA models. The ESTIMATE statement is used to
define the MA model to be applied to the variable identified in the previous IDENTIFY statement
and to estimate the model’s parameters. Additionally, the ESTIMATE statement generates diagnostic
statistics to assist in evaluating the model suitability.

• proc arima data=vstl;
identify var=Load(1,1440)
nlag=1440;
run;

• /*** for subset AR ***/
estimate p=(1,1440,1441)
noconstant
method=uls;
run;

• /*** for multiplicative AR ***/
estimate p=(1)(1440) noconstant
method=uls;
run;

• /*** for additive AR ***/
estimate p=(1,1440) noconstant
method=uls;
run;

• proc arima data=vstl;
identify
var=Load(1,10080,10081)
nlag=10080 noprint;
run;

• /*** Subset AR ***/
estimate
p=(1)
P=(1,10080,10081)
noconstant method=uls;
run;

• /*** Multiplicative AR ***/
estimate
p=(1)
P=(1)(10080)(10081)
noconstant method=uls;
run;

• /*** Additive AR ***/
estimate
p=(1)
P=(1,10080)
noconstant method=uls;
run;

• proc arima data=vstl;
identify var=Load(1,1440)
nlag=1440;
run;

• /*** Subset MA ***/
estimate q=(1,1440,1441)
noconstant
method=uls;
run;

• /*** Multiplicative MA ***/
estimate q=(1)(1440) noconstant
method=uls;
run;

• /*** Additive MA ***/
estimate q=(1,1440) noconstant
method=uls;
run;

• proc arima data=vstl;
identify
var=Load(1,10080,10081)
nlag=10080 noprint;
run;

• /*** Subset MA ***/
estimate
q=(1)
Q=(1,10080,10081)
noconstant method=uls;
run;

• /*** Multiplicative MA ***/
estimate
q=(1)
Q=(1)(10080)(10081)
noconstant method=uls;
run;

• /*** Additive MA ***/
estimate
q=(1)
Q=(1,10080)
noconstant method=uls;
run;
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3.4. Model Checking

Summary output from Table 3 estimation for subset, Table 4 estimation for multiplicative, Table
5 estimation for additive. Using the Ljung-Box test, it is confirmed that all models meet the assump-
tion that the residuals are white noise.

TABLE 3. Unconditional Least Squares Estimation for Subset

Unconditional Least Squares Estimation
Parameter Estimate St Error t Value Pr >|t| Lag
MA1,1 -0.048 0.00416 -11.69 < 1,00×10−4 1
MA2,1 -0.432 0.00318 -135.92 < 1,00×10−4 1
MA2,2 0.787 0.0030 259.67 < 1,00×10−4 10080
MA2,3 0.645 0.00323 199.72 < 1,00×10−4 10081

TABLE 4. Unconditional Least Squares Estimation for Multiplicative

Unconditional Least Squares Estimation
Parameter Estimate St Error t Value Pr >|t| Lag
MA1,1 -0.174 0.0686 -2.55 0.0109 1
MA2,1 -0.207 0.0680 -3.04 0.0023 1
MA2,2 0.999 0.0046 213.10 <.0001 10080

Correlations of Parameter Estimates
Parameter MA1,1 MA2,1 MA2,2

MA1,1 1.000 -0.999 0.226
MA2,1 -0.999 1.000 -0.227
MA2,2 0.226 -0.227 1.000

TABLE 5. Unconditional Least Squares Estimation for Additive

Unconditional Least Squares Estimation

Parameter Estimate St Error t Value Pr >|t| Lag
MA1,1 -0.352 0.00246 -143.11 <.0001 1
MA2,1 -0.1003 0.00254 -39.46 <.0001 1
MA2,2 0.899 0.00309 290.23 <.0001 10080

Correlations of Parameter Estimates
Parameter MA1,1 MA2,1 MA2,2

MA1,1 1.000 -0.486 -0.168
MA2,1 -0.486 1.000 -0.157
MA2,2 -0.168 -0.157 1.000

Then, the process continues to calculate the forecasting values based on the subset with eq.
(9), multiplicative with eq. (10), and additive with eq. (11) models for performance comparison and
evaluation.

L̂ ∗
t = (1+0.04863B)(1+0.43289B−0.7876B10080 −0.64521B10081)εt (9)

where d1 = D1 = D2 = 1 and L̂ ∗
t = ∇d∇D1

1440∇D2
10080 ln(L̂t −µ) and Lt is the actual data, i.e. the very

short term load.

L̂ ∗
t = (1+0.17476B)(1+0.20723B)(1−0.999B10080)εt (10)

where d1 = D1 = D2 = 1 and L̂ ∗
t = ∇d∇D1

1440∇D2
10080 ln(L̂t −µ) and Lt is the actual data, i.e. the very

short term load.

L̂ ∗
t = (1−0.35269B)(1+0.10035B−0.89965B10080)εt (11)
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where d1 = D1 = D2 = 1 and L̂ ∗
t = ∇d∇D1

1440∇D2
10080 ln(L̂t −µ) and Lt is the actual data, i.e. the very

short term load.
Additive Model. In this model, all parameters are significant at the 0.1 alpha significance

level, with white noise residuals as confirmed by the Ljung-Box test up to lag 10080. Table 6 presents
10 extreme residual values. However, the residuals of the model in Table 7 do not follow a normal
distribution due to the presence of outliers in the data.

TABLE 6. Extreme Observations for Additive Model

Extreme Observations
Lowest Highest

Value Obs Value Obs
-1200.480 176864 1162.90 160053
-1147250 175620 1205.25 169108
-1062.530 173406 1233.03 176586
-1000.685 169107 1163.91 173407
-824.213 174488 1581.99 176865

TABLE 7. Test for Normality for Additive Model

Test for Normality
Test Statistics P Value

Kolmogorov-Smirnov D 0.045354 Pr >D <0.0100
Cramer-von Mises W-Sq 165.4151 Pr >W-Sq <0.0050
Anderson-Darling A-Sq 1094.89 Pr >A-Sq <0.0050

Subset Model. In this model, all the parameters are significant at alpha 0.1 significance level
with white noise residuals based on the Ljung-Box test until lag 10080. Table 8 from this model give
also 10 extreme residual values. Table 9 with the model’s residuals however do not satisfy the normal
distribution because of the presence of outliers in the data.

TABLE 8. Extreme Observations for Subset Model

Extreme Observations
Lowest Highest

Value Obs Value Obs
-1173.776 176864 1177.49 160053
-1154.947 175620 1261.15 169108
-1041.418 173406 1278.06 173407
-985.862 169107 1452.62 176586
-908.523 176585 1662.62 176865

TABLE 9. Test for Normality for Subset Model

Test for Normality
Test Statistics P Value

Kolmogorov-Smirnov D 0.034702 Pr >D <0.0100
Cramer-von Mises W-Sq 98.70502 Pr >W-Sq <0.0050
Anderson-Darling A-Sq 657.2371 Pr >A-Sq <0.0050

Multiplicative Model. In this model, all the parameters are significant at alpha 0.1 signif-
icance level with white noise residuals based on Ljung-Box test until lag 10080. Table 10 give 10
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extreme residual values. Table 11 model’s residuals how ever do not satisfy the normal distribution
because of the presence of outliers in the data.

TABLE 10. Extreme Observations for Multiplicative Model

Extreme Observations
Lowest Highest

Value Obs Value Obs
-1199.605 176864 1151.45 160053
-1152.882 175620 1153.26 169108
-1064.021 173406 1161.01 176586
-1002.799 169107 1196.74 173407
-822.757 174488 1509.94 176865

TABLE 11. Test for Normality for Multiplicative Model

Test for Normality
Test Statistics P Value

Kolmogorov-Smirnov D 0.047206 Pr >D <0.0100
Cramer-von Mises W-Sq 176.3649 Pr >W-Sq <0.0050
Anderson-Darling A-Sq 1162.973 Pr >A-Sq <0.0050

3.5. Performance Comparison

The model identification step for the MA models showed that there were different ACF and
PACF between the subset, multiplicative and additive models, particularly in the lag order, as the
results of the performance evaluation show that the multiplicative model yields a better forecast in
the sample data set, or less SBC and AIC, than the additive and subset MA model, also the estimated
parameter of multiplicative effect was significant. The comparison results between the additive, subset
and multiplicative models are summarized in Table 12.

TABLE 12. AIC, SBC for MA Model

Subset Additive Multiplicative
Variance Est. 1589.84 1839.802 1178.873
Std Error Est. 39.8728 42.89291 34.33472
AIC 2030623 2059872 1977496
SBC 2030664 2059902 1977537
Number of Res. 198716 198716 198716

4. CONCLUSIONS

This paper discusses three types of seasonal MA models, namely the subset, multiplicative, and
additive models, including the theoretical aspects of ACF and PACF, how to model these values using
the R program, and how to test them using the SAS program when estimating the model using the
Box-Jenkins method. Most previous studies simply used the multiplicative MA model directly, with-
out extensively defining ACF or PACF with lags as the order of multiplication and without testing
whether the multiplicative parameter is significant. Overall, these empirical results show that when
determining the orders in the subset, multiplicative, or additive models, the MA model should account
for the subset, multiplicative, or additive order.
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FIGURE 5. Model subset (a), Model multiplicative (b), Model
additive (c), Distribution of residual normality diagnostics for
load (d), and QQ-plot residual normality diagnostics for load (e)
White noise prob residual correlation diagnostics for load.
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