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Abstract

This article discusses the sixth-order predictor-corrector method by changing the integral limit of
[tn,tn+1] to [tn—3,tn+1). This method combines the explicit Adam-Bashforth approach as a predictor
and the implicit Adam-Moulton approach as corrector. The results obtained show that the numerical
solution is close to the exact solution and the selection of a small stepsize h makes this method an alter-
native method in solving various initial value problems.
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1. INTRODUCTION

Differential equations form a fundamental branch of applied mathematics, playing a crucial role
in modeling natural phenomena and systems involving dynamic changes. As a subject, differential
equations are strategically important because they integrate key aspects of mathematics-such as anal-
ysis, algebra, and geometry-which are essential for introducing core concepts and solving real-world
problems.

One common issue in the study of differential equations is the initial value problem (IVP). The
general form of an IVP is given by:

X')=f,X®), X(to)=Xo, teR, t=to. (1)

Equations (1) can be solved either analytically or numerically. However, the analytical solution
is often difficult or impossible to obtain, making numerical methods a more practical and optimal
approach. Numerical techniques for solving IVPs can be broadly classified into one-step methods, such
as Euler and Runge-Kutta, and multi-step methods.

In one-step methods, Runge-Kutta (RK) serves as an alternative to Taylor methods, as it does
not require evaluating derivatives of the function. RK methods are known for their high accuracy,
although the number of computations required increases significantly with the order of the method.

As explained by Boyce and DiPrima [4], in multi-step methods, the integral in Equation (1) is
computed over several intervals, allowing the use of previously computed solution points to generate
more accurate approximations. This class includes Adams-Bashforth (AB) methods, which are explicit
and computationally efficient but less stable, and Adams-Moulton (AM) methods, which are implicit
and offer better stability at the cost of additional computations at each step.
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Atkinson and Han [1] describe multi-step methods as ebing derived by integrating Equation (1)
over the interval [¢,,t,+1], leading to the following expression:

th+1
Xpe1 =X, + f £(t,X(@t)dt.
tn

Building on this foundation, several researchers have explored the development and application
of predictor-corrector methods. For example, Sami et al. [7] employed high-order predictor-corrector
schemes to solve fractional-order differential equations, as did Binh and Bongsoo [3]. Zaid [8] also
utilized a predictor-corrector method for solving initial value problems involving the Caputo fractional
derivative.

In this article, we investigate the initial value problem given in Equation (1) using a predictor-
corrector approach by extending the integration interval from [¢,,¢,+1] to [¢,-4,¢,+1]. The study also
includes a numerical stability analysis of the Adam-Bashforth (AB) and Adams-Moulton (AM) meth-
ods. Finally, the effectiveness of the proposed method is assessed through a series of numerical exper-
iments on selected example problems. .

2. RESEARCH METHOD

2.1. Derivation of the Proposed Method

This study begins by defining the initial value problem in its general form. The differential
equation is then integrated over the interval [¢,_4,¢,+1], under the assumption that the solution val-
ues at the previous points are known. To determine the required weights or integral coefficients in the
resulting formula, the Lagrange polynomial interpolation approach is employed. This technique en-
ables a more efficient estimation of the integral. The resulting coefficients are then used to construct a
sixth-order predictor formula, which provides a more accurate initial numerical approximation before
correction.

2.2. Method Development

In this phase, the derived predictor method is further developed by introducing a corrector
method, leading to the construction of a sixth-order predictor-corrector scheme. The development
begins by using the fourth-order Runge-Kutta (RK-4) method to generate the initial values required
for the multi-step process.

Once the initial values are obtained, the sixth-order Adams-Bashforth method (AB-6) is used as
a predictor to estimate the solution at the next time step. This prediction yields an approximation of
Xn+1 Without requiring iterations or the solution of nonlinear equations. As an explicit method, AB-6
offers fast computation but tends to produce higher error. Therefore, the predicted value is refined
using a corrector method. The corrector employed is the sixth-order Adams-Moulton method (AM-6),
which is implicit and delivers higher accuracy by incorporating the newly estimated solution value.

The corrector method is derived similarly to the predictor, using integral approximation, with
coefficients determined through Lagrange polynomial interpolation. These coefficients are then sub-
stituted into the integral expression, resulting in the formulation of the corrector.

3. RESULTS

3.1. Fourth-Order Runge-Kutta Method

The Runge-Kutta method serves as an alternative to the Taylor series method, offering a way to
approximate solutions without requiring derivative computations. As described by Burden and Faires
[5], the Runge-Kutta method evaluates f(¢,X(t)) at several points within each step, while maintaining
an accuracy level comparable to that of the Taylor method. Within the predictor-corrector framework,
the Runge-Kutta method is typically used to generate the initial estimates required before the multi-
step predictor-corrector scheme can be applied.
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Among the various Runge-Kutta methods, the fourth-order Runge-Kutta (RK-4) method is the
most widely used due to its superior accuracy compared to lower-order methods. The general form of
the fourth-order Runge-Kutta method is given as follows:

h
Xpn+l =Xpn + E(kl +2ko +2k3 + ky),

dengan
k1=1(tn,xn)

h h
ko =f(t, + nyn“' akl)

h h
k3 Zf(tn+ §,xn+ §k2)

ke=f(tn+h,x, +hk3).

3.2. Adam-Bashforth-Moulton Predictor Method

The Adams-Bashforth method is an explicit technique used to solve initial value problems of the
form given in Equation (1). As explained by Boyce and DiPrima [4], this method acts as a predictor,
utilizing previously computed solution values to estimate the derivative function. The sixth-order
Adams-Bashforth method (AB-6) is derived by integrating Equation (1) over the interval [¢,-3,t,+1],

th+1
X1 =Xnog + f g(t)dt, )

th-3
where g(t) = f(¢,X(¢)) is approximated with Lagrange interpolating polynomial of order sixth, g(¢) =
P5(t)
g(t) = P5(t) + R5(t), (3)

where P5(t) is a Lagrange interpolating polynomial, and L is a Lagrange polynomial, which is defined
as follows:
P5(t) = g(tn75)Lnf5(t) + g(tnﬂt)LnﬂL(t) + g(tn73)Ln73(t) + g(tnf2)Ln72(t)
+8(tn-1)Lpn-1(8)+ g(tn)Ly(2),

where R5(t) is the interpolation error defined as follows:

(t—tn5)t—tn-a)t —tn3)t —tn_2)t—tn_ 1) —ty)
Rs(t) = n—5 n—4 n—3 n-2 n-1 n f(6)(ft)~
(6)!
Based on the previously described integration process, the resulting for Equation (2) is given as

follows:

h
Xn+1 = Xn—3 + 5(148f(tn’Xn)_ 186f(tn—1,Xn—1) + 344f(tn—2,Xn—2)_ 196f(tn—3an—3)
286
+84f (tn—4,Xn-4) = 14f (tn5, Xp-5) + 5 h XV E). )

Let x, = x(,) = X(¢,), Where x, is the approximation to the exact solution X(¢,). From Equation
(4), the AB-6 is given as follows:

h
Xp+l=2Xp_3+ E(l48x;l — 18690;1_1 + 344x;1_2 — 196x;l_3 + 84x;l_4 — 14x;l_5), 5)

where n =3,4,5,....
From (5), we obtain the sixth order predictor method as follows:

h
O =, g+ 15 (14870 = 186f, 1+ 344f, 5 — 196y 3 +84f 4 — 14 5). (6)

n+l ™~
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3.3. Adam-Bashforth-Moulton Corrector Method

The corrector method is derived using the same process as the predictor method. In the corrector
step, frn+1 is evaluated using the sixth-order Adams-Moulton method to obtain a more accurate value
of x,+1. Based on Equation (3), the formulation for the sixth-order Adams-Moulton method is given
by:

P5(t)=g(tn-4)Lp—4(t)+ g(tn-3)Lp—_3(t) + g(tn—2)Lp—2(t) + g(tp-1)Lp—1(2)
+8(n)Ln () + g(tn+1)Lp11(2), (7)
where P5(t) is the Lagrange interpolating polinomial and the interpolation error R5(¢) is given by
(t—tp-a)t—tn3)t—tn2)(t —tp- 1) — )t~ tn+1)
(6)!
Integrating Equation (7) and (8), and substituting to (2) resulting in:

Rs(t) = o). (8)

h
Xn+1 :Xn—3 + 4_5(14f(tn+1,Xn+1)+64f(tnaXn)+24f(tn—1,Xn—1)+64f(tn—2’Xn—2)

8 156
+14f(tp-3,X,-3)) 945hX (&) 9)

By letting x, = x(,) = X(¢,) in (9), we obtain AM-6 as described below:

h
Xn+1=Xp-3+ E(Mx;+1 +64x), +24x,_; +64x) _,+14x,_2), (10)

where n =2,3,4,....
We define formula for AM-6 as:

h
Xp+1=Xp-3+ E(l4fn+l +64f, +24f, 1 +64f, 2+ 14f; 3). (11)

3.4. Stabiliy of Adam-Bashforth-Moulton Method

Atkinson and Han [1] state that a numerical method is considered stable if the chosen step size i
is sufficiently small. However, selecting a very small 2 may reduce computational efficiency. Stability
refers to the ability of a numerical method to maintain a bounded and accurate solution, even when
the step size is relatively large.

The Adams-Bashforth method, due to its explicit nature, has a relatively narrow stability region.
As a result, the step size A must be kept small to prevent instability in the numerical solution. Atkison
[2] provide a commonly used test problem for analyzing stability:

X't)=AX@®), t>0, X(0)=1, (12)
where A is a real negative number or a complex number with a negative real part. The exact solution
to Equation (12) is X () = eM.

A numerical method is said to be stable for this problem if its solution satisfies x(¢,) — 0 as
t, — oo regardless the chosen step size h. The set of all 21 values in the complex plane for which the
numerical solution satisfies x, — 0 as n — oo is known as the method’s region of absolute stability [2].

Applying the AB-6 for the test problem (2) in order to determine the stability of the method,
results in

hA
Xp+l=%Xp-3+ E(l48xn —186x,-1 + 344x, 2 — 196x,_3 + 84x,_4 — 14x,_5), (13)

where n = 3,4,5,.... Next, by letting x, = r" in equation (13) and utilizing the characteristics polyno-

mial, we have

n+l rn73 _ h_ﬂ
45

where n =3,4,5,...,r = e’ and 0 <6 < 27. Equation (14) is used to solve the characteristic roots that

will be used to determine the stability of the method.

r (148, — 186x,_1 + 3442, — 196x,_3 + 84x,_4 — 14%x,_5) = 0, (14)
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Furthermore, by simplifying equation (14) dan by letting AA = z, we obtain the stability polyno-

mial for the sixth-order Adam-Bashforth method as follows:

45(e5i0 _ ei@)
z= - - - - - .
148e510 — 18640 + 344310 — 196210 + 8410 — 14
If the polynomial in Equation (15) is plotted for 0 < 6 < 27 the stability region of the Adams-
Bashforth sixth-order (AB-6) method is obtained, as illustrated in Figure 1 below. The area enclosed
within the curve represents the stability region of the AB-6 method.

As shown in the figure, this stability region includes a portion of the negative real axis up to

a certain bound, indicating that the method is particularly suitable for solving differential equations
whose stability can be maintained by appropriately choosing the step size A. ¢

(15)
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FIGURE 1. The stability region of the sixth-order Adam-Bashforth method

After obtaining the stability region of the AB-6 method, the stability region of the AM-6 method
will be determined using the same procedure. By applying the test problem from Equation (2), the
AM-6 method formula in Equation (10) becomes:

hA
Xp+1=Xn-3+ E(l4xn+1 +64x, +24x,_1+64x,_9+ 14x,_3), (16)

where n = 2,3,4,.... Next, by using the characteristics polynomial approach and by letting x, = r",
Equation (16) becomes

hA
ptl =3 _ E(l4xn+1 +64x, +24x,_1 +64x,_9 + 14x,_3) = 0, an

where n=38,4,5,...,r=¢' dan 0< 0 < 2.

By simplifying Equation (17) and by assuming A\ = z, we obtain stability polynomial for the
sixth-order AM method as follows:

B 45(e*9 - 1)
© 7 146510 1+ 64040 + 24310 + 640200 + 1410

If the polynomial in Equation (18) is plotted for 0 < 6 < 27 the stability region of the AM-6 method
is obtained, as illustrated in Figure 2 below. The area enclosed by the curve represents the stability
region of the AM-6 method. Unlike the Adams-Bashforth method, the Adams-Moulton method exhibits
a wider stability region, making it more suitable for solving differential equations where stability can
be preserved by selecting an appropriate step size . The stability region of the AM-6 method indicates
that, at certain orders, the method possesses strong stability properties. It is particularly effective for
numerical simulations that demand high stability, and is therefore frequently used in computations
requiring high accuracy and long-term integration.

(18)



140 Syamsudhuha et.al, JOMSO Vol 2 No 2 January 2025, pp. 135-142,
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FIGURE 2. The stability region of the sixth-order Adam-Moulton method

3.5. Numerical Simulation

In this section, we applied the proposed method to several initial value problems as follow:

-30

—éO —1‘0
Re(z)

Example 3.1. The solution of the initial value problems

X'W)=@2-tx@), 2<t<3,

with the exact solution

X(8) = e 05027,

0 10

x(2)=1,

(19)

The solution of (19) in Example 3.1 using the sixth-order predictor-corrector method is presented
in Table below, where x, denotes the numerical approximation of x,.1, and X,, represents the exact

solution.

TABLE 1. Solution for Example 3.1.

in Xn E Erel

2.00 1.0000 0 0

250 0.8825 1.4le—12 1.60e—-12
3.00 0.6065 2.79¢—-12 4.6le—12
3.50 0.3247 1.04de-12 3.22¢—12
4.00 0.1353 6.07e—13 4.49¢—-12
450 0.0439 4.10e—-13 9.34e-12
5.00 0.0111 2.69e—-13 2.42e¢-11
550 0.0022 9.09¢—-14 4.16e-11
6.00 0.0003 1.80e—13 5.37e—10

In Table 1, the error is defined as the absolute difference between the exact solution X, and the

numerical solution x,, expressed as E = |X,, —x,|, and the relative error is given by E,.; = |

method is implemented with a step size of A = 0.02 over the interval ¢ =[2,6].

|. The

If the solution from Example 3.1 is plotted, the resulting graph is illustrated in Figure below. As
shown in the figure, the numerical solution closely follows the exact solution, indicating good agree-
ment between the two. The plot also reveals that the most significant error occurs at the beginning of
the computation. However, the error decreases over time, suggesting that the accuracy of the numeri-
cal method improves as the solution progresses.
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FIGURE 3. Graph of the solution Example 3.1 with the sixth-order predictor-corrector method

Example 3.2. [6] Water balance observations in peatland areas under daily rainfall are carried out
through simulations based on available data. The governing equation for the water balance is given by:

WV _ap ~ET)-Q. (20)
dt
where V(t) represents the water volume at time t, A = 1000m?2 is the observation area, ET =
5mm/day is the constant evapotranspiration rate, and @ = 20m®/day is the estimated outflow due to
surface runoff and drainage. THe rainfall function is modeled as P(t) = 10+ 5 sin (0.01xt), which
follows as sinusoidal pattern representing periodic weather changes over a span of 100 days. The goal
is to predict the water volume over a 100—day period, starting from an initial volume of V(0) = 2000m?,
using the predictor-corrector method. The problem setup and its simulation results are illustrated in
figure below.

FIGURE 4. Illlustration for Example 3.2

The solution for Example 3.2 using the sixth-order predictor-corrector method is presented in
Table 2, where V denotes the computed water volume at time ¢,+1 and X, represents the exact (an-
alytical) solution at the corresponding time step. In the following table, the error is calculated as the
absolute difference between the exact and numerical solutions, expressed asE = |X,, — V|, while the
relative error is given by E,.; = IXj{V |. The simulation is performed over the interval ¢ =[0,100] with

a step size of A = 1.

n

The solution of Example 3.2 is illustrated in Figure 5, which depicts the variation of water
volume V(¢) in a peatland area over a 100-day period, based on the water balance model described
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TABLE 2. Solution for Example 3.2.

tn V(m?) E E el

0 2000 0 0
10.00 1857.7896 9.12¢—11 4.9le—14
20.00 1730.3959 3.65e—10 2.11e—13
30.00 1615.6060 2.66e—11 1.65¢—14
40.00 1509.9734 2.03e—10 1.35¢—13
50.00 1409.1549 2.17¢—10 1.54e¢—13
60.00 1308.3365 3.18¢—12 2.43¢-15
70.00 1202.7039 4.07¢—10 3.38¢—13
80.00 1087.9140 1.59¢—-10 1.46e-13
90.00 960.5203 5.25e—10 5.46e—13
100.00 818.3099 2.21e—10 2.70e—13
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FIGURE 5. Graph of the solution for Example 3.2

by Equation (20). The figure clearly shows that the numerical and exact solutions closely overlap,
indicating that the predictor-corrector method yields highly accurate results.

The observed decline in water volume is primarily attributed to the sinusoidal pattern of rainfall
P(t), which periodically fluctuates and is often insufficient to offset the combined effects of constant
evapotranspiration ET and outflow @. Consequently, the water volume in the system continuously
decreases over time. This declining trend reflects the long-term water balance and provides valuable
insight into how peatland ecosystems respond to climatic variations and rainfall patterns. The close
agreement between the numerical and exact solutions demonstrates the effectiveness and reliability
of the predictor-corrector method in solving dynamic models of this nature.

4. CONCLUSIONS

Based on the results and discussions presented in this study, the numerical experiments demon-
strate that the predictor-corrector method yields numerical solutions that closely approximate the
exact solutions. The discrepancy between the numerical and exact solutions was evaluated using the
maximum norm || X (¢,)—x(¢,)|l, which effectively quantifies the accuracy of the numerical method.

Furthermore, the tabulated results indicate a clear trend: as the stepsize i decreases, the nu-
merical error also diminishes. This highlights the sensitivity of the method to the choice of stepsize
and confirms that optimal accuracy can be achieved with appropriately small stepsizes. Thus, the
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performance of the predictor-corrector method, particularly of sixth order, depends significantly on a
well-chosen discretization parameter. These findings underscore the method’s reliability and effective-
ness for solving initial value problems with high precision, especially when computational resources
allow for fine time discretization.
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