SEPIR Model of Skin Cancer Caused by Exposure to Ultraviolet Light

Authors

  • Devi Yanti Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Irma Suryani Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Wartono
  • Mohammad Saleh
  • Yuslenita Muda

DOI:

https://doi.org/10.31258/jomso.v2i1.32

Keywords:

Basic reproduction number, SEPIR model, Jacobian matrix, Eigen value

Abstract

Skin cancer is a disease that occurs due to a change in the nature of normal skin cells into abnormal skin cells, where these cells will divide into abnormal forms in an unconditioned manner due to DNA damage. This research explains the stability of the SEPIR model in skin cancer caused by exposure to ultraviolet light. The population is divided into five subpopulations, namely, susceptible (S), latent period with early symptoms (E), pre-cancer (P), infected (I), and recovered from skin cancer (R). Based on the model analysis using Jacobian matrix and eigen value, there is one equilibrium point free and one endemic equilibrium point for skin cancer and the basic reproduction number R0. The results of the stability test of the equilibrium test using basic reproduction number (R0)  showed that if  R0<1, then the equilibrium point free from skin cancer is asymptotically stable and if  R0>1 the equilibrium point endemic to skin cancer is asymptotically stable.

References

A. M. Hidayatika and T. S. N. Asih, 2021, Pemodelan Matematika Perkembangan Kanker Serviks dengan Treatment Radioterapi, in PRISMA, Prosiding Seminar Nasional Matematika, vol. 4, pp. 727–735.

F. H. Sulaiman, K. Yulianti, and H. Serviana, 2019, Model Matematika terapi kanker menggunakan kemoterapi, imunoterapi, dan biochemotherapy,” Jurnal Eureka Matika, vol. 7, no. 1, pp. 1–10.

M. P. Hendaria, A. Asmarajaya, and S. Maliawan, 2013, Kanker kulit, Kanker Kulit, pp. 1–17.

N. Wedayani and D. Hidajat, 2022, Edukasi tentang Pengenalan Tanda Gejala, Pencegahan dan Penanganan Kanker Kulit Sebagai Dampak Paparan Sinar Matahari dan Penggunaan Kosmetik Berbahan Kimia Berbahaya di Poli Kulit Rumah Sakit Akademik Universitas Mataram, Jurnal Pengabdian Magister Pendidikan IPA, vol. 5, no. 3, pp. 223–226.

S. Side, W. Sanusi, and N. A. Bohari, 2021, Pemodelan matematika SEIR penyebaran penyakit pneumonia pada balita dengan pengaruh vaksinasi di kota Makassar, Journal of Mathematics, Computations, and Statistics, vol. 4, no. 1, pp. 1–12.

S. Side, A. Zaki, and N. Rahmasari, 2021, Model Matematika SEIR Pada Kanker Kulit Akibat Paparan Sinar Ultraviolet Di Provinsi Sulawesi Selatan, Journal of Mathematics, Computations and Statistics, vol.4 no.4 pp.76-78.

F. Shoviantari and L. Agustina, 2021, Penyuluhan Pencegahan Kanker Kulit Dengan Penggunaan Tabir Surya, Journal Community Engagem. Empower., vol. 3, no. 1, 2021.

L. Darlina, 2012, Kestabilan Titik Equilibrium Model SIR (Susceptible, Infected, Recovered) Penyakit Fatal dengan Migrasi, Universitas Islam Negeri Sultan Syarif Kasim Riau.

Y. M. Rangkuti and S. Side, 2013, Solusi Numerik Pemodelan Matematika SIR dan SEIR untuk Penularan Demam Berdarah dengan Metode Semi Analitik di Sulawesi Selatan, Lembaga Penelitian UNIMED, Medan.

I. Suryani and F. Ariad, 2017, Analisis Kestabilan Model Seirs Pada Penyebaran Penyakit Flu Singapura (Hand, Foot And Mouth Disease) Dengan Saturated Incidence Rate, Jurnal Sains Matatematika dan Statistika, vol. 4, no. 2, pp. 63–73.

T. Syamsuddin, Khaeruddin dan A.R.Mansyur, Model SIR Untuk Penyebaran Penyakit Flu Burung, Jurnal Matematika,Statistika dan Komputasi, vol.10, halaman 1-10, 2014.

Downloads

Published

2024-07-31