A SIXTH-ORDER PREDICTOR-CORRECTOR METHOD FOR INITIAL VALUE PROBLEMS
DOI:
https://doi.org/10.31258/jomso.v2i2.39Keywords:
initial value problems, predictor-corrector method, Adam-Bashforth method, Adam-Muolton method, stability regionAbstract
This article discusses the sixth-order predictor-corrector method by changing the integral limit of$[t_n,t_{n+1}]$ to $[t_{n-3},t_{n+1}]$. This method combines the explicit Adam-Bashforth approach
as a predictor and the implicit Adam-Moulton approach as corrector. The results obtained show that
the numerical solution is close to the exact solution and the selection of a small \textit{stepsize}
$h$ makes this method an alternative method in solving various initial value problems.
References
K. E. Atkinson dan W. Han, 1993, Elementary Numerical Analysis, Third Edition, John Wiley & Sons, New York.
K. E. Atkinson, W. Han, dan D. E. Stewart, 2009, Numerical Solution of Ordinary Differential Equations, John Wiley & Sons, Hoboken.
N. T. Binh dan J. Bongsoo, 2017, A High-Order Predictor-Corrector Method for Solving Nonliner Differential Equations of Fractional Order, Fractional Calculus and Applied Analysis, Volume: 20 pp 447-476.
W. E. Boyce dan R. C. Diprima, 2008, Elementary Differential Equations and Boundary Value Problem, Ninth Edition, Jhon Wiley & Sons, New York.
R. L. Burden dan J. D. Faires, 2011, Numerical Analysis, Ninth Edition, Brooks/Cole, Boston.
H. Klammler, C. J. Quintero, J. W. Jawitz, D. L. Mclaughlin, dan M. J. Cohen, 2020, Local Storage Dynamics of Individual Wetlands Predict Wetlandscape Discharge, Water Resources Research, Volume : 56 pp 1-18.
A. Sami, N. M. Salmi, D. Redouane, dan A.Salem, 2022, A High-Order Predictor-Corrector Method for Initial Value Problem with Fractional Derivative Involving Mittag-Leffler Kerner: Epidemic Model Case Study, Mathematical Methods in the Applied Sciences, Volume : 1 pp 1-23.
O. Zaid, 2021, A Universal Predictor-Corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations, Nonlinear Dynamics, Volume : 105 pp 2363-2374.





