AUTOMATIC WEIGHT CRITERIA FOR SAW-BASED DECISION SUPPORT SYSTEM USING GRADIENT DESCENT

Authors

  • Ibnu Daqiqil ID Information Systems, Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia
  • Aditia Anhar Information Systems, Faculty of Mathematics and Natural Sciences, Universitas Riau, Indonesia

DOI:

https://doi.org/10.31258/jsmds.v1i2.13

Keywords:

Gradient Descent, Decision Support System, SAW, Linear Regresion

Abstract

Modern organizations always utilize a Decision Support Systems (DSS) to have informed decision-making. The Simple Additive Weighting (SAW) method is a prevalent approach used in DSS for evaluating alternatives based on specific criteria. However, the subjectivity inherent in determining criteria weights in SAW poses a significant challenge. This research introduces a new approach, combining the SAW method with Gradient Descent to automatically determine criteria weights. By doing so, it takes advantage of the similarities between SAW and linear equations. Our research shows that this method produces more accurate and unbiased criteria weights, as confirmed by the Mean Square Error (MSE) analysis. In conclusion, incorporating Gradient Descent into the Decision Support System has the potential to greatly improve its effectiveness by automating the criteria weight determination process in various decision-making scenarios, leading to more accurate and less subjective decision support in organizations.

References

Admojo, F. T., & Sulistya, Y. I. (2022). Analisis Performa Algoritma Stochastic Gradient Descent (SGD) Dalam Mengklasifikasi Tahu Berformalin. Indonesian Journal of Data and Science, 3(1), 1–8. https://doi.org/10.56705/ijodas.v3i1.42

Astuti, Y., & Fu’ad, I. Z. (2017). Penentuan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting Pada PT. Patra Nur Alaska. Jurnal STMIK Pringsewu, 5(1), 37–42. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1699%0Ahttp://ojs.amikom.ac.id/index.php/semna steknomedia/article/view/1699/1576

Coding, J., Untan, S. K., Muhammad, ], Junanda, R., Dwi, ], Midyanti, M., Rekayasa, J., Komputer, S., Mipa, F., Tanjungpura, U., Prof, J., Hadari, H., & Pontianak, N. (2018). Aplikasi Prediksi Ketersediaan Pangan Di Kabupaten Ketapang Menggunakan Metode Jaringan Syaraf Tiruan Resilient-Backpropagation Berbasis Web. Jurnal Coding, Sistem Komputer Untan, 06(03), 150–160. https://jurnal.untan.ac.id/index.php/jcskommipa/article/view/29046

Efendi, D., Jasril, J., Sanjaya, S., Syafria, F., & Budianita, E. (2022). Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi. JURIKOM (Jurnal Riset Komputer), 9(3), 607. https://doi.org/10.30865/jurikom.v9i3.4176

Handoko, W. (2019). Prediksi Jumlah Penerimaan Mahasiswa Baru Dengan Metode Single Exponential Smoothing (Studi Kasus: Amik Royal Kisaran). JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 125–132. https://doi.org/10.33330/jurteksi.v5i2.356

Kurniawan, W. (2020). a. Sistem Pendukung Keputusan Untuk Menentukan Penerimaan Kartu Indonesia Pintar menggunakan Metode Simple Multi Attribute Rating Technique (SMART) Berbasis Web.

Maya, Y., & Sari, H. R. (2014). Sistem Pendukung Keputusan Penentuan Karyawan Terbaik Menggunakan Metode Saw (Simple Additive Weighting) Studi Kasus Pt. Pertamina RU II Dumai. Sistem Informasi …. https://www.academia.edu/download/55010922/YDL_Sistem-Pendukung-Keputusan-Penentuan-Karyawan-Terbaik-Menggunakan-Metoddi-Kasus-PT.pdf

Pertiwi, C., & Dianan, A. (2020). Aplikasi Sistem Pendukung Keputusan Penilaian Karyawan Terbaik Menggunakan Metode AHP Dan SAW. Jurnal Budi Luhur Informatika Tecnology, 17(1), 23–30. https://journal.budiluhur.ac.id/index.php/bit

Rochmawati, N., Hidayati, H. B., Yamasari, Y., Tjahyaningtijas, H. P. A., Yustanti, W., & Prihanto, A. (2021). Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam. Journal of Information Engineering and Educational Technology, 5(2), 44–48. https://doi.org/10.26740/jieet.v5n2.p44-48

Sudipa, I. G. I., & Sri Aryati, K. (2019). Pendekatan Penentuan Bobot dengan Surrogate Weighting Procedures untuk Metode Simple Additive Weighting dalam Pengambilan Keputusan Multikriteria. International Journal of Natural Science and Engineering, 3(3), 113. https://doi.org/10.23887/ijnse.v3i3.24146

Suhendra, C. D., & Saputra, A. C. (2020). Penentuan Parameter Learning Rate Selama Pembelajaran Jaringan Syaraf Tiruan. 14(2), 202–212.

Sukerta Wijaya, I. W., Harjumawan Wiratmaja KS., I. G., Pramana Setya Bintara, I. D. M. A., & Ryan Aditya Permana, I. K. G. (2021). Program Menghitung Banyak Bata pada Ruangan Menggunakan Bahasa Python. TIERS Information Technology Journal, 2(1). https://doi.org/10.38043/tiers.v2i1.2840

Sutabri. (2012). Analisis Sistem Informasi (Christian putri (ed.)). cv andi offset. https://books.google.co.id/books?hl=id&lr=&id=ro5eDwAAQBAJ&oi=fnd&pg=PA1&dq=Sutabri,+2012&ots=WDncUR6gUg&sig=5Jy1ZmHJ2Ngk6ETH7hPmXzFxyt0&redir_esc=y#v=onepage&q=Sutabri%2C 2012&f=false

Sutisna, H., & Basjaruddin, N. C. (2016). Sistem Pendukung Keputusan Pemilihan Pekerjaan Menggunakan Metode Fuzzy Mamdani Studi Kasus: Amik Bsi Tasikmalaya. Jurnal Informatika, 2(2). https://doi.org/10.31311/ji.v2i2.109

Swasono, A. (2022). Analisis Faktor-Faktor Penentu Penerimaan Data Kredit Pada Nasabah Koperasi KSPPS BMT Lampung Tengah Menggunakan Gradient Descent. Jurnal Ilmu Data, 2(10), 1–9. http://ilmudata.org/index.php/ilmudata/article/view/251%0Ahttp://ilmudata.org/index.php/ilmudata/article/download/251/243

Downloads

Published

05-04-2024

How to Cite

Ibnu Daqiqil ID, & Anhar , A. . (2024). AUTOMATIC WEIGHT CRITERIA FOR SAW-BASED DECISION SUPPORT SYSTEM USING GRADIENT DESCENT. Journal of Statistical Methods and Data Science, 1(2). https://doi.org/10.31258/jsmds.v1i2.13