Bayesian Statistics for Study Population Statistics and Demography

Authors

  • Achmad Isya Alfassa Universitas Islam Indragiri, Indonesia

DOI:

https://doi.org/10.31258/jsmds.v1i1.4

Keywords:

Bayesian Statistics, Statistics, Population, Demographic

Abstract

Bayesian statistics is a method that belongs to the realm of statistical science which is based on the rules of the science of chance or probability. The Bayesian method is also used in carrying out projection analysis to see a picture of future conditions. This research was conducted to show the relationship between Bayesian Statistics and Demographic and Population Statistics Studies. The results of Bayesian Statistics can be used in the study of Population Statistics and Demography to carry out analysis with previous data and to find out and predict a picture of future conditions to determine the right policies, especially in analyzing population projections, population indicators and other demographics.

References

Alfassa, A. I. (2018). Aplikasi Self Organizing Maps dan Webgis dengan menggunakan R dan QGIS untuk Analisis Kependudukan 100 Negara di Dunia. Skripsi. Statistika, Universitas Islam Indonesia.

Alfassa, A. I., & Kesumawati, A. (2020). Segmentation of Karhutla Hotspot Point of Indragiri Hilir Regency 2015 and 2016 using Self Organizing Maps (Soms). In Proceedings Ofthe International Conference on Mathematics and Islam (ICMIs 2018). UIN Mataram Indonesia and ADMAPETA (Asosiasi dosen matematika dan pendidikan/Tadris Matematika), Mataram, Indonesia (pp. 336-341).

Alfassa, A. I. (2022). Statistika Kependudukan Untuk Rencana Kebijakan Kependudukan Daerah. DEMOS: Journal of Demography, Ethnography and Social Transformation, 2(2), 76-85.

Andika, I., Maharani, D., & Mardalius, M. (2022). Penerapan Teorema Bayes pada Sistem Pakar Pendeteksi Penyakit Domba. Edumatic: Jurnal Pendidikan Informatika, 6(2), 252- 259.

Bongaarts, J. (2009). Human population growth and the demographic transition. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1532), 2985–2990. https://doi.org/10.1098/rstb.2009.0137

Das, S. R. (2016). Data Science: Theories, Models, Algorithms, and Analytics. Apache License. http://algo.scu.edu/∼sanjivdas/

Hartshorn, S. (2016). Bayes Theorem Examples: A Visual Guide For Beginners. On Kindle Scribe. http://pzs.dstu.dp.ua/DataMining/bayes/bibl/bayes_theorem_examples.pdf

Imani, N., Alfassa, A. I., & Yolanda, A. M. (2023). Analisis Cluster Terhadap Indikator Data Sosial Di Provinsi Nusa Tenggara Timur Menggunakan Metode Self Organizing Map (SOM). Jurnal Gaussian, 11(3), 458-467.

Nurmayanti, W. P., Saky, D. A. L., Malthuf, M., Gazali, M., & Hirzi, R. H. (2021). Penerapan Naive Bayes dalam Mengklasifikasikan Masyarakat Miskin di Desa Lepak. Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi, 5(1), 123-132.

Temp. (2016). Simulation for Data Science with R. Packt Publishing. https://www.oreilly.com/library/view/simulation-for-data/9781785881169/

Vollset, S. E., Goren, E., Yuan, C. W., Cao, J., Smith, A. E., Hsiao, T., Bisignano, C., Azhar, G. S., Castro, E., Chalek, J., Dolgert, A. J., Frank, T., Fukutaki, K., Hay, S. I., Lozano, R., Mokdad, A. H., Nandakumar, V., Pierce, M., Pletcher, M., … Murray, C. J. L. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. The Lancet, 396(10258), 1285–1306. https://doi.org/10.1016/S0140-6736(20)30677-2

Downloads

Published

30-06-2023

How to Cite

Alfassa, A. I. (2023). Bayesian Statistics for Study Population Statistics and Demography. Journal of Statistical Methods and Data Science, 1(1), 17–24. https://doi.org/10.31258/jsmds.v1i1.4