IMPLEMENTATION OF THE RANDOM FOREST METHOD FOR PREDICTING STUDENTS’ LENGTH OF STUDY

Authors

  • Ali Akbar Jurusan Ilmu Komputer, Universitas Riau, Indonesia
  • Zul Indra Jurusan Ilmu Komputer, Universitas Riau, Indonesia
  • Yanti Andriyani Jurusan Ilmu Komputer, Universitas Riau, Indonesia
  • Tisha Melia Jurusan Ilmu Komputer, Universitas Riau

DOI:

https://doi.org/10.31258/jsmds.v1i2.15

Keywords:

Random Forest, Duration of Study, Cross Validation, Confusion Matrix

Abstract

Predicting a student's duration of study is essential for universities to ensure students complete their studies on time. This research aims to develop an effective prediction model for determining the length of study based on related factors. To overcome the complexity and diversity of student data, the Random Forest method was chosen. The results indicate that the Random Forest method is an effective tool for predicting the duration of study for university students. A study was conducted on 1,535 graduates from the five departments at the Faculty of Mathematics and Natural Sciences, Riau University. The study employed cross-validation techniques to measure model performance. The model's accuracy was evaluated using a confusion matrix, which revealed that the Random Forest model had an average accuracy of 95.12%. Additionally, feature importance analyses identified grade point average in the eighth semester as a major contributor to the prediction outcome.

References

Adhani, M. H. R., & Iswari, L. (2022). Pengembangan Aplikasi Berbasis Web dengan R Shiny untuk Analisis Data Menggunakan Algoritma PCA. Journal.Uii.Ac.Id, 3(1), 1–18.

Adrian, M. R., Putra, M. P., Rafialdy, M. H., & Rakhmawati, N. A. (2021). Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB. Jurnal Informatika Upgris, 7(1), 36–40. https://doi.org/10.26877/jiu.v7i1.7099

Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Sistemasi, 10(1), 163–171. https://doi.org/10.32520/stmsi.v10i1.1129

Asana, I. M. D. P., Sudipa, I. G. I., Mayun, A. A. T. W., Meinarni, N. P. S., & Waas, D. V. (2022). Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID. INFORMAL: Informatics Journal, 7(1), 38. https://doi.org/10.19184/isj.v7i1.30901

Endang Etriyanti. (2021). Perbandingan Tingkat Akurasi Metode Knn Dan Decision Tree Dalam Memprediksi Lama Studi Mahasiswa. Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, 3(1), 6–14. https://doi.org/10.52303/jb.v3i1.40

Hasan, I. K., Resmawan, R., & Ibrahim, J. (2022). Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa. Indonesian Journal of Applied Statistics, 5(1), 58. https://doi.org/10.13057/ijas.v5i1.58056

Hastie, T., Friedman, J., Tibshirani, R. (2001). Model Assessment and Selection. In: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21606-5_7

Mariko, S. (2019). Aplikasi website berbasis HTML dan JavaScript untuk menyelesaikan fungsi integral pada mata kuliah kalkulus. Jurnal Inovasi Teknologi Pendidikan, 6(1), 80–91. https://doi.org/10.21831/jitp.v6i1.22280

Marutho, Dhendra. 2019. “Perbandingan Metode Naïve Bayes, KNN, Decision Tree Pada Laporan Water Level Jakarta.” Jurnal Ilmiah Infokam 15 (2): 90–97.

Orpa, E. P. K., Ripanti, E. F., & Tursina. (2019). Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision tree c4.5. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 7(4), 272–278.

Purbolaksono, M. D., Tantowi, M. I., Hidayat, A. I., & Adiwijaya. (2021). Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes. Jurnal.Iaii.or.Id, 1(10), 393–399.

Qadrini L, Sepperwali A, & Aina A. (2021). Decision Tree Dan Adaboost Pada Klasifikasi Penerima Program Bantuan Sosial. Jurnal Inovasi Penelitian, 2(7), 1959–1966.

Saadah, S., & Salsabila, H. (2021). Prediksi Harga Bitcoin Menggunakan Metode Random Forest. Jurnal Politeknik Caltex Riau, 7(1), 24–32.

Sari, I. P., Syahputra, A., Zaky, N., Sibuea, R. U., & Zakhir, Z. (2022). Perancangan Sistem Aplikasi Penjualan dan Layanan Jasa Laundry Sepatu Berbasis Website. Jurnal.Ilmubersama.Com, 1(1), 32–37.

Windarto, A. P., Defit, S., & Wanto, A. (2021). Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil. Jurnal Sistem Informasi Bisnis, 11(1), 34–42. https://doi.org/10.21456/vol11iss1pp34-42

Downloads

Published

05-04-2024

How to Cite

Akbar, A. ., Indra, Z. ., Andriyani, Y. ., & Melia, T. (2024). IMPLEMENTATION OF THE RANDOM FOREST METHOD FOR PREDICTING STUDENTS’ LENGTH OF STUDY. Journal of Statistical Methods and Data Science, 1(2). https://doi.org/10.31258/jsmds.v1i2.15