K-MEANS CLUSTERING USING ELBOW METHOD IN CASE OF DIABETES MILLETUS TYPE II IN INDONESIA
DOI:
https://doi.org/10.31258/jsmds.v1i2.5Keywords:
clustering, diabetes MiletusAbstract
Indonesia is ranked 7th out of 10 countries with the
highest number of sufferers. BPJS Health include First Level
Health Facilities (FKTP) and Advanced Referral Health
Facilities (FKRTL) which Type 2 diabetes mellitus is one of
the ten most common diagnoses at FKRTL visits and ranks
third after follow-up examinations after treatment for
conditions other than malignant neoplasms and kidney failure
with a percentage of 3.54% and a total of 62,455 for 2019 to
2020. In deciding policies related to the funding of BPJS
participants who suffer from diabetes mellitus, it is necessary
to have the characteristics of each region so that policy making
is more appropriate. The method used in this study uses
clustering analysis using the K-means algorithm for type
II diabetes mellitus in Indonesia from 2015-2020 by
province. Based on the outcome of the clustering
provinces in indonesia using K-Means algorithm with
optimization of the determination of the number of
cluster using elbow method formed 3 cluster. 1 st cluster has
21 province, the 2 nd cluster has 9 province and the 3 rd cluster
has 4 province.
References
BPJS.2020. Data Sampel BPJS Kesehatan 2015-2020. Jakarta.
Bholowalia, Purnima & Kumar, Arvind. (2014). EBK-Means: A Clustering Techiniques based on Elbow Method and K-Means in WSN. International Journal of Computer Application. IX(105), 17-24. https://doi.org/10.5120/18405-9674
Dewi, D. A. I. C. and Pramita, D. A. K. (2019). Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. Jurnal Matrix. 9(3). http://dx.doi.org/10.31940/matrix.v9i3.1662.
Ediyanto, Mara, M.N. & Satyahadewi, N. (2013). Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat. Stat. dan Terapannya. II(2),133-36. ISSN: 2302-9854.
Febrianti, A. F., Cabral, A. H., Anuraga, G. (2018). K-means Clustering Dengan Metode Elbow Untuk Pengelompokkan Kabupaten dan Kota Di Jawa Timur Berdasarkan Indikator Kemiskinan. 863- 870. http://dx.doi.org/10.46984/sebatik.v26i2.2134.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (Third Edition). Waltham. MA: Morgan Kaufmann Publishers.
Infodatin Pusat Data dan Informasi Kementerian Kesehatan RI. (2020). Tetap Produktif, Cegah, dan Atasi Diabetes Melitus. Jakarta. ISSN 2442-7659.
International Diabetes Federation (IDF). 2014. IDF Diabetes Atlas. Available from: https://idf.org/e-library/epidemiologyresearch/diabetes-atlas.html.
Kementerian Kesehatan RI. (2014). Peraturan Menteri Kesehatan Republik Indonesia No. 28 Tahun 2014 Tentang Pedoman Pelaksanaan Jaminan Kesehatan Nasional. Jakarta : Kementerian Kesehatan RI.
Nuraini HY, Supriatna R. (2019) Hubungan Pola Makan, Aktivitas Fisik Dan Riwayat Penyakit Keluarga Terhadap Diabetes Melitus Tipe 2. Jurnal Ilmu Kesehatan Masyarakat. 5(1):5-13.
PERKENI. (2021). Petunjuk Praktis Terapi Insulin Pada Pasien Diabeter Melitus. Jakarta - PB. PERKENI.
Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-MEANS dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jurnal Ilmiah Teknologi Informasi Terapan. 1(2), 62-67.
Sulthoni, H.S. and Sofia, Ayu. 2023. Prediction of FKRTL service Diagnosed with Type 2 Diabetes Mellitus Using the Hierarchial Agglomerative Clustering Time Series Method. International Journal of Scientific Research in Science, Engineering and Technology. 10(6):144-156. http://dx.doi.org/10.32628/IJSRSET231064.
Umargono, E, Suseno,J.E & Gunawan, S.K.V. 2019. Kmeans Clustering Optimization Using the Elbow Method and Eraly Centroid Determination Based on Mean and Median Formula. Advances in Social Science, Education and Humanities Research. 474. http://dx.doi.org/10.2991/assehr.k.201010.019.
WHO. (2023). Available: https://www.who.int/news-room/fact-sheets/detail/diabetes. [Accessed 07 Juli 2023].