Forecasting of International Flights Passenger at Soekarno-Hatta Airport using The Triple Exponential Smoothing Method
DOI:
https://doi.org/10.31258/jsmds.v1i1.8Keywords:
Exponential Smoothing Method, Triple Exponential Smoothing Method, Seasonal Data, MAD (Mean Absolute Deviation), MAPEAbstract
This study aims to predict the number of passengers at Sorkarno-Hatta Airport using the method with the first step testing the stationary pattern and seasonal pattern from the data. The triple exponential smoothing method is better at predicting seasonal data on the number of passengers at Soekarno Hatta airport. The best triple exponential smoothing model that can be used to predict the number of passengers at Soekarno Hata Airport is Ft= 0.40xt+0.31St+0.91St-1+1.89 bt-1 +0.60 lt-L with optimal parameters alpha = 0.10, betha = 0.01, and gamma = 0.30.
References
Aimran, A. N., & Afthanorhan, A. (2014). A comparison between single exponential smoothing (SES), double exponential smoothing (DES), holt’s (brown) and adaptive response rate exponential smoothing (ARRES) techniques in forecasting Malaysia population. Global Journal of Mathematical Analysis, 2(4), 276. https://doi.org/10.14419/gjma.v2i4.3253
Booranawong, T., Wattananavin, T., Nikhom, R., Auysakul, J., & Booranawong, A. (2021). Analysis of AHW and EAHW Time-Series Forecasting Methods : A Mathematical and Computational Perspective. Naresuan University Engineering Journal, 16(1), 7–13
Ginantra, N. L. W. S. R., & Anandita, I. B. G. (2021). Penerapan Metode Single Exponential Smoothing dalam Peramalan Penjualan Barang. Jurnal Sains Komputer & Informatika (JSAKTI), 10(3), 154–159. https://doi.org/10.30591/smartcomp.v10i3.2887
Himawan, H., & Silitonga, P. D. P. (2020). Comparison of Forecasting Accuracy Rate of Exponential Smoothing Method On Admission of New Students. Journal of Critical Reviews, 7(2), 268–274
Jonnius. (2017). Peramalan Indeks Harga Saham dengan Pendekatan Exponential Smoothing Model. Jurnal Penelitian Sosial Keagamaan, 19(2), 199–219.
Kramar, V., & Alchakov, V. (2023). Time-Series Forecasting of Seasonal Data Using Machine Learning Methods. Algorithms, 16(5), 248. https://doi.org/10.3390/a16050248
Masrudin, Satyahadewi, N., & Imro’ah, N. (2018). Peramalan Jumlah Wisatawan Mancanegara Di Kota Pontianak Dengan Metode Seasonalized. Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), 07(3), 159–168. https://doi.org/10.26418/bbimst.v7i3.26104
Paparoditis, E., & Politis, D. N. (2018). The asymptotic size and power of the augmented Dickey–Fuller test for a unit root. Econometric Reviews, 37(9), 955–973. https://doi.org/10.1080/00927872.2016.1178887
Santoso, A. B., & Kusumajaya, R. A. (2019). Analisa Algoritma Exponential Smoothing Untuk Sistem Perencanaan Produksi Kain Batik Di Ukm Batik Tinctori Natural Dye Jambu. Jurnal Teknologi Informasi Dan Komunikasi, 10(1), 23–32. https://doi.org/10.51903/jtikp.v10i1.141
Shastri, S., Sharma, A., Mansotra, V., & Sharma, A. (2018). A Study on Exponential Smoothing Method for Forecasting. International Journal of Computer Sciences and Engineering, 6(4), 482–485. https://doi.org/10.26438/ijcse/v6i4.482485
Singh, K., Shastri, S., Bhadwal, A. S., Kour, P., & Kumari, M. (2019). Implementation of Exponential Smoothing for Forecasting Time Series Data. 8(1), 6–9.
Siregar, M. A., & Puspitasari, N. B. (2023). Peramalan Hasil Produksi Minyak Kelapa Sawit PT . Bakrie Pasaman Plantations Dengan Metode Holt- Winter ’ S Exponential Smoothing. Industrial Engineering Online Journal, 12(2), 1–12.
Suryani, F., Moulita, R. A. N., & Aprilyanti, S. (2023). Analisis Peramalan Pemasangan Internet dengan Menggunakan Metode Single Moving Average dan Exponential Smoothing Analysis of Internet Installation Forecasting using Single Moving Average and Exponential Smoothing Methods. 01, 3–7.
Triana, R. (2015). Aplikasi Peramalan Penjualan Menggunakan Metode Winter Pada Milkiwae. UPN Veteran
Downloads
Published
Versions
- 30-06-2023 (3)
- 30-06-2023 (1)